Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025M☉and a radius of 0.4250 ± 0.0091R☉. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M☉. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029M☉and a radius of 0.5299 ± 0.0091R☉. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K).
more »
« less
This content will become publicly available on August 1, 2025
A hot-Jupiter progenitor on a super-eccentric retrograde orbit
Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.
more »
« less
- PAR ID:
- 10537585
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature
- Volume:
- 632
- Issue:
- 8023
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 50 to 54
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 d, 0.394$$^{+0.035}_{-0.038}$$), TOI-2145 b (P = 10.261 d, e = $$0.208^{+0.034}_{-0.047}$$), and TOI-2497 b (P = 10.656 d, e = $$0.195^{+0.043}_{-0.040}$$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $$5.26^{+0.38}_{-0.37}$$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.more » « less
-
Abstract WASP-107 b seems to be a poster child of the long-suspected high-eccentricity migration scenario. It is on a 5.7 day, polar orbit. The planet is Jupiter-like in radius but Neptune-like in mass with exceptionally low density. WASP-107 c is on a 1100 day,e= 0.28 orbit with at least Saturn mass. Planet b may still have a residual eccentricity of 0.06 ± 0.04: the ongoing tidal dissipation leads to the observed internally heated atmosphere and hydrodynamic atmospheric erosion. We present a population synthesis study coupling octupole Lidov–Kozai oscillations with various short-range forces, while simultaneously accounting for the radius inflation and tidal disruption of the planet. We find that a high-eccentricity migration scenario can successfully explain nearly all observed system properties. Our simulations further suggest that the initial location of WASP-107 b at the onset of migration is likely within the snowline (<0.5 au). More distant initial orbits usually lead to tidal disruption or orbit crossing. WASP-107 b most likely lost no more than 20% of its mass during the high-eccentricity migration, i.e., it did not form as a Jupiter-mass object. More vigorous tidally induced mass loss leads to disruption of the planet during migration. We predict that the current-day mutual inclination between the planets b and c is substantial: at least 25°–55°, which may be tested with future Gaia astrometric observations. Knowing the current-day mutual inclination may further constrain the initial orbit of planet b. We suggest that the proposed high-eccentricity migration scenario of WASP-107 may be applicable to HAT-P-11, GJ-3470, HAT-P-18, and GJ-436, which have similar orbital architectures.more » « less
-
Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( ) and TOI-5301 b ( ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.more » « less
-
Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution.more » « less