Field experiences are highly valued in geoscience education. However, logistical, financial, and accessibility challenges associated with fieldwork and rapid advancements in technology have all prompted geoscience educators to explore virtual field experiences (VFEs) as alternatives. Rigorous assessment of the effectiveness of VFEs has not kept pace with their implementation, but recent studies offer meaningful and actionable findings that can inform ongoing and future use of VFEs in geoscience education. We present a review of selected studies that address three significant aspects of this still-evolving modality. First, we examine current characterization and classification of VFEs. Second, we examine studies that evaluate the effectiveness of teaching with VFEs. Third, we extend this review to studies that compare VFEs with in-person field experiences (IPFEs). The studies we review demonstrate that VFEs are a valuable approach to teaching introductory geoscience content, even compared to IPFEs.▪Challenges associated with field geoscience education and improvements in technology have led geoscience educators to develop and implement virtual field experiences (VFEs) as teaching tools.▪VFEs are tested, practical, and effective alternatives to in-person field experiences in introductory geoscience education. 
                        more » 
                        « less   
                    
                            
                            Improving Retention of Underrepresented Groups in the Geosciences through an Intensive First-Year Experience at the University of South Carolina
                        
                    
    
            There have been many efforts to broaden participation and diversity in the geosciences with varying degrees of success. The goal of the National Science Foundation-funded GeoScholar Program in the School of the Earth, Ocean & Environment (SEOE) at the University of South Carolina was to increase geoscience exposure and the number of geoscience undergraduate majors (environmental, geological, and marine sciences) from low-income, minority, and first-generation college backgrounds. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2231647
- PAR ID:
- 10544056
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Practitioners and researchers in geoscience education embrace collaboration applying ICON (Integrated, Coordinated, Open science, and Networked) principles and approaches which have been used to create and share large collections of educational resources, to move forward collective priorities, and to foster peer‐learning among educators. These strategies can also support the advancement of coproduction between geoscientists and diverse communities. For this reason, many authors from the geoscience education community have co‐created three commentaries on the use and future of ICON in geoscience education. We envision that sharing our expertise with ICON practice will be useful to other geoscience communities seeking to strengthen collaboration. Geoscience education brings substantial expertise in social science research and its application to building individual and collective capacity to address earth sustainability and equity issues at local to global scales The geoscience education community has expanded its own ICON capacity through access to and use of shared resources and research findings, enhancing data sharing and publication, and leadership development. We prioritize continued use of ICON principles to develop effective and inclusive communities that increase equity in geoscience education and beyond, support leadership and full participation of systemically non‐dominant groups and enable global discussions and collaborations.more » « less
- 
            Undergraduate summer field programs are valuable experiences that can foster or reduce students’ self-efficacy, an important factor in students’ success and retention in geoscience. Growing research findings show that science field experiences can be hostile and unwelcoming to students with marginalized identities, which may negatively impact their self-efficacy in geoscience, a discipline with a dearth of students from underrepresented, marginalized identities. We conducted an interpretive qualitative study examining how summer geoscience field programs affected two undergraduate, marginalized students’ self-efficacy. Adding to existing theoretical explanations of self-efficacy, we identified three types of self-efficacy impacted positively and negatively by geoscience field experiences: academic, physical, and social self-efficacy. We developed a nuanced understanding of the specific field experiences that influenced the ‘ups and downs’ of students’ self-efficacy and, ultimately, their intent in continuing to pursue a geoscience education or career. Despite negative experiences, including gender discrimination, crude sexual jokes, and a lack of belonging, the students described their intent to persist in geoscience. Our findings can assist geoscience educators (and others in field-based sciences) to consider experiences that support and hinder marginalized students’ self-efficacy. Also, our findings can guide efforts to improve geoscience field programs to create more inclusive environments.more » « less
- 
            Abstract We investigated how families experienced immersion as they collaboratively made sense of geologic time and geoscience processes during a place-based, learning-on-the-move (LOTM) experience mediated by a mobile augmented reality (MAR) app. Our team developed an MAR app,Time Explorers, that focused on how rock-water interactions shaped Appalachia over millions of years. Data were collected at the Children’s Garden at the Arboretum at Penn State. Data sources were videos of app usage, point-of-view camera recordings with audio capturing family conversations, and interviews from 17 families (51 people). The analytical technique was interaction analysis, in which episodes of family sense-making were identified and developed into qualitative vignettes focused on how immersion did or did not support learning about geoscience and geologic time. We analyzed how design elements supported sensory, actional, narrative, and social immersion through photo-taking, discussion prompts, and augmented reality visualizations. Findings showed that sensory and social immersion supported sense-making conversations and observational inquiry, while narrative and actional immersion supported deep family engagement with the geoscience content. At many micro-sites of learning, families engaged in multiple immersive processes where conversations, observational inquiry, and deep engagement with the geoscience came together during LOTM. This analysis contributes to the CSCL literature on theory related to LOTM in outdoor informal settings, while also providing design conjectures in an immersive, family-centered, place-based LOTM framework.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    