skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring the Spot Variability of T Tauri Stars Using Near-infrared Atomic Fe and Molecular OH Lines
Abstract As part of the Young Exoplanets Spectroscopic Survey, this study explores the spot variability of 13 T Tauri Stars (TTSs) in the near-infraredHband, using spectra from the Immersion GRating INfrared Spectrometer. By analyzing effective temperature (Teff) sensitive lines of atomic Feiat ∼1.56259μm and ∼1.56362μm, and molecular OH at ∼1.56310 and ∼1.56317μm, we develop an empirical equivalent width ratio (EWR) relationship forTeffin the range of 3400–5000 K. This relationship allows for precise relativeTeffestimates to within tens of Kelvin and demonstrates compatibility with solar metallicity target models. However, discrepancies between observational data and model predictions limit the extension of theTeff–EWR relationship to a broader parameter space. Our study reveals that both classical and weak-line TTSs can exhibitTeffvariations exceeding 150 K over a span of 2 yr. The detection of a quarter-phase delay between the EWR and radial velocity phase curves in TTSs indicates spot-driven signals. A phase delay of 0.06 ± 0.13 for CI Tau, however, suggests additional dynamics, potentially caused by planetary interaction, inferred from a posited 1:1 commensurability between the rotation period and orbital period. Moreover, a positive correlation betweenTeffvariation amplitude and stellar inclination angle supports the existence of high-latitude spots on TTSs, further enriching our understanding of stellar surface activity in young stars.  more » « less
Award ID(s):
2009197
PAR ID:
10544135
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 124
Size(s):
Article No. 124
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA’s Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor,fspot. The best-fit models spanned two photospheric component temperatures,Tphot= 4100 K (K7V) and 4400 K (K5V), and one spot component temperature,Tspot= 3060 K (M5V) with anAVof 0.3. We find values offspotto vary between 0.77 and 0.94 with an average uncertainty of ∼0.04. The variability offspotis periodic and correlates with its 3.374 day rotational period. Using a mean value forfmeanspotto represent the total spot coverage, we calculated spot corrected values forTeffandL. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45–0.6Mand 0.50–1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimatingTeffandLto infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars. 
    more » « less
  2. Abstract We assess the impact of Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption arising in the interstellar medium (ISM) on the Sloan Digital Sky Survey-IV MaNGA Stellar Library (MaStar) and produce corrected spectroscopy for 80% of the 24,162-star catalog. We model the absorption strength of these transitions as a function of the stellar distance, Galactic latitude, and dust reddening based on high-spectral resolution studies. With this model, we identify 6342 MaStar stars that have negligible ISM absorption (WISM(CaiiK) < 0.07 Å andWISM(Nai5891) < 0.05 Å). For 12,110 of the remaining stars, we replace their NaiD profile (and their Caiiprofile for effective temperaturesTeff> 9000 K) with a coadded spectrum of low-ISM stars with similarTeff, surface gravity, and metallicity. For 738 additional stars withTeff> 9000 K, we replace these spectral regions with a matching ATLAS9-based BOSZ model. This results in a mean reduction inW(CaiiK) (W(NaiD)) of 0.4–0.7 Å (0.6–1.1 Å) for hot stars (Teff> 7610 K), and a mean reduction inW(NaiD) of 0.1–0.2 Å for cooler stars. We show that interstellar absorption in the simple stellar population (SSP) model spectra constructed from the original library artificially enhancesW(CaiiK) by ≳20% at young ages (<400 Myr); dramatically enhances the strength of stellar NaiD in starbursting systems (by ≳50%); and enhances stellar NaiD in older stellar populations (≳10 Gyr) by ≳10%. We provide SSP spectra constructed from the cleaned library and discuss the implications of these effects for stellar population synthesis analyses constraining the stellar age, [Na/Fe] abundance, and initial mass function. 
    more » « less
  3. Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M,R= 1.34 ± 0.02R, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars. 
    more » « less
  4. Abstract The enormous increase in mid-IR sensitivity and spatial and spectral resolution provided by the JWST spectrographs enables, for the first time, detailed extragalactic studies of molecular vibrational bands. This opens an entirely new window for the study of the molecular interstellar medium in luminous infrared galaxies (LIRGs). We present a detailed analysis of rovibrational bands of gas-phase CO, H2O, C2H2, and HCN toward the heavily obscured eastern nucleus of the LIRG VV 114, as observed by NIRSpec and the medium resolution spectrograph on the Mid-InfraRed Instrument (MIRI MRS). Spectra extracted from apertures of 130 pc in radius show a clear dichotomy between the obscured active galactic nucleus (AGN) and two intense starburst regions. We detect the 2.3μm CO bandheads, characteristic of cool stellar atmospheres, in the star-forming regions, but not toward the AGN. Surprisingly, at 4.7μm, we find highly excited CO (Tex≈ 700–800 K out to at least rotational levelJ= 27) toward the star-forming regions, but only cooler gas (Tex≈ 200 K) toward the AGN. We conclude that only mid-infrared pumping through the rovibrational lines can account for the equilibrium conditions found for CO and H2O in the deeply embedded starbursts. Here, the CO bands probe regions with an intense local radiation field inside dusty young massive star clusters or near the most massive young stars. The lack of high-excitation molecular gas toward the AGN is attributed to geometric dilution of the intense radiation from the bright point source. An overview of the relevant excitation and radiative transfer physics is provided in an appendix. 
    more » « less
  5. Abstract Using Keck Planet Imager and Characterizer high-resolution (R∼ 35,000) spectroscopy from 2.29 to 2.49μm, we present uniform atmospheric retrievals for eight young substellar companions with masses of ∼10–30MJup, orbital separations spanning ∼50–360 au, andTeffbetween ∼1500 and 2600 K. We find that all companions have solar C/O ratios and metallicities to within the 1σ–2σlevel, with the measurements clustered around solar composition. Stars in the same stellar associations as our systems have near-solar abundances, so these results indicate that this population of companions is consistent with formation via direct gravitational collapse. Alternatively, core accretion outside the CO snowline would be compatible with our measurements, though the high mass ratios of most systems would require rapid core assembly and gas accretion in massive disks. On a population level, our findings can be contrasted with abundance measurements for directly imaged planets withm< 10MJup, which show tentative atmospheric metal enrichment compared to their host stars. In addition, the atmospheric compositions of our sample of companions are distinct from those of hot Jupiters, which most likely form via core accretion. For two companions withTeff∼ 1700–2000 K (κAnd b and GSC 6214–210 b), our best-fit models prefer a nongray cloud model with >3σsignificance. The cloudy models yield 2σ−3σlowerTefffor these companions, though the C/O and [C/H] still agree between cloudy and clear models at the 1σlevel. Finally, we constrain12CO/13CO for three companions with the highest signal-to-noise ratio data (GQ Lup b, HIP 79098b, and DH Tau b) and report v sin i and radial velocities for all companions. 
    more » « less