As part of the Young Exoplanets Spectroscopic Survey, this study explores the spot variability of 13 T Tauri Stars (TTSs) in the near-infrared
We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA’s Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor,
- PAR ID:
- 10402697
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 946
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 10
- Size(s):
- Article No. 10
- Sponsoring Org:
- National Science Foundation
More Like this
-
Measuring the Spot Variability of T Tauri Stars Using Near-infrared Atomic Fe and Molecular OH Lines
Abstract H band, using spectra from the Immersion GRating INfrared Spectrometer. By analyzing effective temperature (T eff) sensitive lines of atomic Fei at ∼1.56259μ m and ∼1.56362μ m, and molecular OH at ∼1.56310 and ∼1.56317μ m, we develop an empirical equivalent width ratio (EWR) relationship forT effin the range of 3400–5000 K. This relationship allows for precise relativeT effestimates to within tens of Kelvin and demonstrates compatibility with solar metallicity target models. However, discrepancies between observational data and model predictions limit the extension of theT eff–EWR relationship to a broader parameter space. Our study reveals that both classical and weak-line TTSs can exhibitT effvariations exceeding 150 K over a span of 2 yr. The detection of a quarter-phase delay between the EWR and radial velocity phase curves in TTSs indicates spot-driven signals. A phase delay of 0.06 ± 0.13 for CI Tau, however, suggests additional dynamics, potentially caused by planetary interaction, inferred from a posited 1:1 commensurability between the rotation period and orbital period. Moreover, a positive correlation betweenT effvariation amplitude and stellar inclination angle supports the existence of high-latitude spots on TTSs, further enriching our understanding of stellar surface activity in young stars. -
Abstract Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot (
STSP ) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star (T eff= 5593 ± 27 K,R ⋆= 1.98 ± 0.05R ⊙) with an M-dwarf companion (M ⋆= 0.214 ± 0.006M ⊙).STSP uses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential rotation. The minimum fractional spotted area of KOI-340's primary is , while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star. -
Abstract We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude Δ
F 814W ≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF 814W sometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (M F 814W ≲ − 7.6 mag,F 606W −F 814W = 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous ( –5.7) star withT eff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M ⊙. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (T eff≲ 3700 K) and slightly less luminous ( –5.3), giving an inferred initial mass of ≈19–22M ⊙. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe. -
Abstract Planetary-mass objects and brown dwarfs at the transition (
T eff∼ 1300 K) from relatively red L dwarfs to bluer mid-T dwarfs show enhanced spectrophotometric variability. Multiepoch observations support atmospheric planetary-scale (Kelvin or Rossby) waves as the primary source of this variability; however, large spots associated with the precipitation of silicate and metal clouds have also been theorized and suggested by Doppler imaging. We applied both wave and spotted models to fit near-infrared (NIR), multiband (Y /J /H /K ) photometry of SIMP J013656.5+093347 (hereafter SIMP0136) collected at the Canada–France–Hawaii Telescope using the Wide-field InfraRed Camera. SIMP0136 is a planetary-mass object (12.7 ± 1.0M J) at the L/T transition (T2 ± 0.5) known to exhibit light-curve evolution over multiple rotational periods. We measure the maximum peak-to-peak variability of 6.17% ± 0.46%, 6.45% ± 0.33%, 6.51% ± 0.42%, and 4.33% ± 0.38% in theY ,J ,H , andK bands, respectively, and find evidence that wave models are preferred for all four NIR bands. Furthermore, we determine that the spot size necessary to reproduce the observed variations is larger than the Rossby deformation radius and Rhines scale, which is unphysical. Through the correlation between light curves produced by the waves and associated color variability, we find evidence of planetary-scale, wave-induced cloud modulation and breakup, similar to Jupiter’s atmosphere and supported by general circulation models. We also detect a 93.°8 ± 7.°4 (12.7σ ) phase shift between theH −K andJ −H color time series, providing evidence for complex vertical cloud structure in SIMP0136's atmosphere. -
Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (
Kp = 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainT eff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M = 1.24 ± 0.05M ⊙,R = 1.34 ± 0.02R ⊙, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars.