skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive safe reinforcement learning‐enabled optimization of battery fast‐charging protocols
Abstract Optimizing charging protocols is critical for reducing battery charging time and decelerating battery degradation in applications such as electric vehicles. Recently, reinforcement learning (RL) methods have been adopted for such purposes. However, RL‐based methods may not ensure system (safety) constraints, which can cause irreversible damages to batteries and reduce their lifetime. To this end, this article proposes an adaptive and safe RL framework to optimize fast charging strategies while respecting safety constraints with a high probability. In our method, any unsafe action that the RL agent decides will be projected into a safety region by solving a constrained optimization problem. The safety region is constructed using adaptive Gaussian process (GP) models, consisting of static and dynamic GPs, that learn from online experience to adaptively account for any changes in battery dynamics. Simulation results show that our method can charge the batteries rapidly with constraint satisfaction under varying operating conditions.  more » « less
Award ID(s):
2340194
PAR ID:
10544145
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
71
Issue:
1
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fast charging of lithium-ion batteries is crucial to increase desirability for consumers and hence accelerate the adoption of electric vehicles. A major barrier to shorter charge times is the accelerated aging of the battery at higher charging rates, which can be driven by lithium plating, increased solid electrolyte interphase growth due to elevated temperatures, and particle cracking due to mechanical stress. Lithium plating depends on the overpotential of the negative electrode, and mechanical stress depends on the concentration gradient, both of which cannot be measured directly. Techniques based on physics-based models of the battery and optimal control algorithms have been developed to this end. While these methods show promise in reducing degradation, their optimization algorithms' complexity can limit their implementation. In this paper, we present a method based on the constant current constant voltage (CC-CV) charging scheme, called CC-CVησT (VEST). The new approach is simpler to implement and can be used with any model to impose varying levels of constraints on variables pertinent to degradation, such as plating potential and mechanical stress. We demonstrate the new CC-CVησT charging using an electrochemical model with mechanical and thermal effects included. Furthermore, we discuss how uncertainties can be accounted for by considering safety margins for the plating and stress constraints. 
    more » « less
  2. Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based & model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity. In detail, we utilize a Proximal Policy Optimization (PPO) deep RL as the training algorithm. The RL is trained in such a way that the capacity loss due to fast charging is minimized. The pack’s highest cell surface temperature is considered an RL state, along with the pack’s state of charge. Finally, in a detailed case study, the results are compared with the constant current-constant voltage (CC-CV) approach, and the outperformance of the RL-based approach is demonstrated. Our proposed PPO model charges the battery as fast as a CC-CV with a 5C constant stage while maintaining the temperature as low as a CC-CV with a 4C constant stage. 
    more » « less
  3. Matni, Nikolai; Morari, Manfred; Pappas, George J. (Ed.)
    Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency. 
    more » « less
  4. Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency. 
    more » « less
  5. Electric Aircraft have the potential to revolutionize short-distance air travel with lower operating costs and simplified maintenance. However, due to the long lead-time associated with procuring batteries and the maintenance challenges of replacing and repairing batteries in electric aircraft, there are still unanswered questions related to the true long-term operating costs of electric aircraft. This research examines using a load-sharing system in electric aircraft to optimally tune battery degradation in a multi-battery system such that the battery life of a single battery is extended. The active optimization of energy drawn from multiple battery packs means that each battery pack reaches its optimal replacement point at the same time; thereby simplifying the maintenance procedure and reducing cost. This work uses lithium iron phosphate batteries experimentally characterized and simulated in OpenModelica for a flight load profile. Adaptive agents control the load on the battery according to factors such as state of charge, and state of health, to respond to potential faults. The findings in this work show the potential for adaptive agents to selectively draw more power from a healthy battery to extend the lifespan of a degraded battery such that the remaining useful life of both batteries reaches zero at the same time. Simulations show that dual battery replacement can be facilitated using the proposed method when the in-service battery has a remaining useful life of greater than 0.5; assuming that the replacement battery it is paired with has a remaining useful life of 1.0. Limitations of the proposed method are discussed within this work. 
    more » « less