skip to main content

Title: An Algorithmic Safety VEST For Li-ion Batteries During Fast Charging
Fast charging of lithium-ion batteries is crucial to increase desirability for consumers and hence accelerate the adoption of electric vehicles. A major barrier to shorter charge times is the accelerated aging of the battery at higher charging rates, which can be driven by lithium plating, increased solid electrolyte interphase growth due to elevated temperatures, and particle cracking due to mechanical stress. Lithium plating depends on the overpotential of the negative electrode, and mechanical stress depends on the concentration gradient, both of which cannot be measured directly. Techniques based on physics-based models of the battery and optimal control algorithms have been developed to this end. While these methods show promise in reducing degradation, their optimization algorithms' complexity can limit their implementation. In this paper, we present a method based on the constant current constant voltage (CC-CV) charging scheme, called CC-CVησT (VEST). The new approach is simpler to implement and can be used with any model to impose varying levels of constraints on variables pertinent to degradation, such as plating potential and mechanical stress. We demonstrate the new CC-CVησT charging using an electrochemical model with mechanical and thermal effects included. Furthermore, we discuss how uncertainties can be accounted for by considering safety more » margins for the plating and stress constraints. « less
Authors:
Award ID(s):
1762247
Publication Date:
NSF-PAR ID:
10299039
Journal Name:
2021 Modeling, Estimation and Control Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Li-ion battery internal short circuits are a major safety issue for electric vehicles, and can lead to serious consequences such as battery thermal runaway. An internal short can be caused by mechanical abuse, high temperature, overcharging, and lithium plating. The low impedance or hard internal short circuit is the most dangerous kind. The high internal current flow can lead to battery temperature increase, thermal runaway, and even explosion in a few seconds. Algorithms that can quickly detect such serious events with a high confidence level and which are robust to sensor noise are needed to ensure passenger safety. False positives are also undesirable as many thermal runaway mitigation techniques, such as activating pyrotechnic safety switches, would disable the vehicle. Conventional methods of battery internal short detection, including voltage and surface temperature based algorithms, work well for a single cell. However, these methods are difficult to apply in large scale battery packs with many parallel cells. In this study, we propose a new internal short detection method by using cell swelling information during the early stages of a battery heating caused by an internal short circuit. By measuring cell expansion force, higher confidence level detection can be achieved for an internalmore »short circuit in an electric vehicle scale battery pack.« less
  2. Accurate tracking of the internal electrochemical states of lithium-ion battery during cycling enables advanced battery management systems to operate the battery safely and maintain high performance while minimizing battery degradation. To this end, techniques based on voltage measurement have shown promise for estimating the lithium surface concentration of active material particles, which is an important state for avoiding aging mechanisms such as lithium plating. However, methods relying on voltage often lead to large estimation errors when the model parameters change during aging. In this paper, we utilize the in-situ measurement of the battery expansion to augment the voltage and develop an observer to estimate the lithium surface concentration distribution in each electrode particle. We demonstrate that the addition of the expansion signal enables us to correct the negative electrode concentration states in addition to the positive electrode. As a result, compared to a voltage only observer, the proposed observer can successfully recover the surface concentration when the electrodes' stoichiometric window changes, which is a common occurrence under aging by loss of lithium inventory. With a 5% shift in the electrodes' stoichiometric window, the results indicate a reduction in state estimation error for the negative electrode surface concentration. Under this simulatedmore »aged condition, the voltage based observer had 9.3% error as compared to the proposed voltage and expansion observer which had 0.1% error in negative electrode surface concentration.« less
  3. Solid-oxide iron-air batteries are an emerging technology for large-scale energy storage, but mechanical degradation of Fe-based storage materials limits battery lifetime. Experimental studies have revealed cycling degradation due to large volume changes during oxidation/reduction (via H2O/H2at 800 °C), but degradation has not yet been correlated with the microstructural stress and strain evolution. Here, we implement a finite element model for oxidation of a Fe lamella to FeO (74% volumetric expansion), in a lamellar Fe foam designed for battery applications. Growth of FeO at the Fe/gas interface is coupled, via an oxidation reaction and solid-state diffusion, with the shrinkage rate of the Fe lamellar core. Using isotropic linear elasticity and plastic hardening, the model simulates deformation of a continuously growing FeO layer by dynamically switching “gas” elements into new “FeO” elements along a sharp FeO/gas interface. As oxidation progresses, the effective plastic strain and von Mises stress increase in FeO. Distribution of tensile and compressive stresses along the Fe/FeO interface are validated by oxidation theory and explain interface delamination, as observed during in operando X-ray tomography experiments. The model explains the superior stability of lamellar vs dendritic foam architectures and the improved redox lifetime of Fe-Ni foams.

  4. Abstract Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation. BEVs promise to drastically reduce greenhouse gas emissions as a result of the transportation sector. However, mass adoption of BEVs faces major barriers due to consumer worries over several important battery-related issues, such as limited range, long charging time, lack of charging stations, and high initial cost. Existing solutions to overcome these barriers, such as building more charging stations, increasing battery capacity, and stationary vehicle-to-vehicle (V2V) charging, often suffer from prohibitive investment costs, incompatibility to existing BEVs, or long travel delays. In this paper, we propose P eer-to- P eer C ar C harging (P2C2), a scalable approach for charging BEVs that alleviates the need for elaborate charging infrastructure. The central idea is to enable BEVs to share charge among each other while inmore »motion through coordination with a cloud-based control system. To re-vitalize a BEV fleet, which is continuously in motion, we introduce Mobile Charging Stations (MoCS), which are high-battery-capacity vehicles used to replenish the overall charge in a vehicle network. Unlike existing V2V charging solutions, the charge sharing in P2C2 takes place while the BEVs are in-motion, which aims at minimizing travel time loss. To reduce BEV-to-BEV contact time without increasing manufacturing costs, we propose to use multiple batteries of varying sizes and charge transfer rates. The faster but smaller batteries are used for charge transfer between vehicles, while the slower but larger ones are used for prolonged charge storage. We have designed the overall P2C2 framework and formalized the decision-making process of the cloud-based control system. We have evaluated the effectiveness of P2C2 using a well-characterized simulation platform and observed dramatic improvement in BEV mobility. Additionally, through statistical analysis, we show that a significant reduction in carbon emission is also possible if MoCS can be powered by renewable energy sources.« less
  5. Uwe Sauer, Dirk (Ed.)
    A B S T R A C T This paper proposes a model for parameter estimation of Vanadium Redox Flow Battery based on both the electrochemical model and the Equivalent Circuit Model. The equivalent circuit elements are found by a newly proposed optimization to minimized the error between the Thevenin and KVL-based impedance of the equivalent circuit. In contrast to most previously proposed circuit models, which are only introduced for constant current charging, the proposed method is applicable for all charging procedures, i.e., constant current, constant voltage, and constant current-constant voltage charging procedures. The proposed model is verified on a nine-cell VRFB stack by a sample constant current-constant voltage charging. As observed, in constant current charging mode, the terminal voltage model matches the measured data closely with low deviation; however, the terminal voltage model shows discrepancies with the measured data of VRFB in constant voltage charging. To improve the proposed circuit model’s discrepancies in constant voltage mode, two Kalman filters, i.e., hybrid extended Kalman filter and particle filter estimation algorithms, are used in this study. The results show the accuracy of the proposed equivalent with an average deviation of 0.88% for terminal voltage model estimation by the extended KF-based methodmore »and the average deviation of 0.79% for the particle filter-based estimation method, while the initial equivalent circuit has an error of 7.21%. Further, the proposed procedure extended to estimate the state of charge of the battery. The results show an average deviation of 4.2% in estimating the battery state of charge using the PF method and 4.4% using the hybrid extended KF method, while the electrochemical SoC estimation method is taken as the reference. These two Kalman Filter based methods are more accurate compared to the average deviation of state of charge using the Coulomb counting method, which is 7.4%.« less