skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing an urban thunderstorm climatology for the Bangkok Metropolitan Region
This investigation builds upon and extends prior lightning research in the Bangkok Metropolitan Region (BMR) through the reconstruction of thunderstorm distribution, utilizing a novel lightning tracking algorithm. Five years (2016–2020) of lightning stroke data from the Global Lightning Dataset (GLD360) were used to identify 52 608 thunderstorms. Optimized hotspot analyses, track densities, and analyses of thunderstorms with respect to winds, landcover, and seasons were performed. Our findings suggest that significant modification of thunderstorm distribution within the region was due to urban landcover impacts on the local environment. Thunderstorm intensity, as measured by stroke counts and track length, also appeared to be sensitive to the urban environment. The thunderstorm distribution also highlighted areas prone to hazards such as flash flooding. By visualizing thunderstorms grouped by winds, thunderstorm initiation hotspots and track density corridors were identified. These corridors of augmented thunderstorm production tended to occur during specific months given the seasonal monsoon wind regime occurring across the BMR. As urbanization within the BMR continues, geospatial assessment of thunderstorms is important to inform forecast meteorologists, urban planners, government officials, and others who play a critical role in developing strategies, policies and insfrastructure that could mitigate thunderstorm impacts.  more » « less
Award ID(s):
2104299
PAR ID:
10544146
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Singapore Journal of Tropical Geography
Volume:
45
Issue:
3
ISSN:
0129-7619
Format(s):
Medium: X Size: p. 498-514
Size(s):
p. 498-514
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bangkok, Thailand is a tropical Asian megacity with high aerosol concentrations and frequent thunderstorm activity. This investigation examines the covariation between thermodynamics, aerosols, and thunderstorms, using lightning stroke counts as a measure of intensity, for a five-year period (2016–2020). The investigation incorporates data from the aerosol robotic network (AERONET), ERA-5 reanalysis, ground-based air quality stations, and total lighting data from Vaisala Inc.’s GLD360 network to examine the aerosol-thermodynamic interrelationships within thunderstorm initiation environments. Results indicate that aerosol impacts on thunderstorms are robust and, when examined in concert with instability, can augment lightning. Thermodynamic instability is also positively correlated with stroke counts in thunderstorms. Particulate matter greater than 10 µg m-3(PM10) concentration is significantly higher in thunderstorms containing more than 100 strokes, supporting the potential role of aerosols in promoting the non-inductive charge process. The emergence of a “boomerang” or threshold effect is also evident as aerosol optical depth (AOD) increases. Evidence suggests increasing AOD initially promotes, then limits, instability and thunderstorm intensity. Finally, there exists a positive relationship between aerosol concentration and particle size in thunderstorm initiation environments. 
    more » « less
  2. A multi-variable investigation of thunderstorm environments in two distinct geographic regions is conducted to assess the aerosol and thermodynamic environments surrounding thunderstorm initiation. 12-years of cloud-to-ground (CG) lightning flash data are used to reconstruct thunderstorms occurring in a 225 km radius centered on the Washington, DC. and Kansas City Metropolitan Regions. A total of 196,836 and 310,209 thunderstorms were identified for Washington, D.C. and Kansas City, MO, respectively. Hourly meteorological and aerosol data were then merged with the thunderstorm event database. Evidence suggests, warm season thunderstorm environments in benign synoptic conditions are considerably different in thermodynamics, aerosol properties, and aerosol concentrations within the Washington, D.C. and Kansas City regions. However, thunderstorm intensity, as measured by flash counts, appears regulated by similar thermodynamic-aerosol relationships despite the differences in their ambient environments. When examining thunderstorm initiation environments, there exists statistically significant, positive relationships between convective available potential energy (CAPE) and flash counts. Aerosol concentration also appears to be a more important quantity than particle size for lightning augmentation. 
    more » « less
  3. Abstract Optical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content. 
    more » « less
  4. Abstract An internationally collaborative airborne campaign in July 2023 – led by the University of Bergen (Norway) and NASA, with contributions from many other institutions – discovered that thunderstorms near Florida and Central America produce gamma rays far more frequently than previously thought. The campaign was called Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper (GLM) Simulator (FEGS) and Terrestrial Gamma-ray Flashes (TGFs), which shortens to ALOFT. The campaign employed a unique sampling strategy with NASA’s high-altitude ER-2 aircraft, equipped with gamma-ray and lightning sensors, flying near ground-based lightning sensors. Realtime updates from instruments, downlinked to mission scientists on the ground, enabled immediate return to thunderstorm cells found to be producing gamma rays. This maximized the observations of radiation created by strong electric fields in clouds, and showed how gamma-ray production may be physically linked to thunderstorm lifecycle. ALOFT also sampled storms entirely within the stereo-viewing region of the GLM instruments on GOES-16/18 and performed multiple underflights of the International Space Station Lightning Imaging Sensor (ISS LIS), while using an upgraded FEGS instrument that demonstrated the operational value of observing multiple wavelengths (including ultraviolet) with future spaceborne lightning mappers. In addition, a robust complement of airborne active and passive microwave sensors – including X- and W-band Doppler radars, as well as radiometers spanning 10-684 GHz – sampled some of the most intense convection ever overflown by the ER-2. These observations will benefit planned convection-focused NASA spaceborne missions. ALOFT is an exemplar of a high-risk, high-reward field campaign that achieved results far beyond original expectations. 
    more » « less
  5. Ecological corridors are one of the best, and possibly only viable, management tools to maintain biodiversity at large scales and to allow species, and ecological processes, to track climate change. This document has been assembled as a summary of the best available information about managing these systems. Our aim with this paper is to provide managers with a convenient guidance document and tool to assist in applying scientific management principles to management of corridors. We do not cover issues related to corridor design or political buy in, but focus on how a corridor should be managed once it has been established. The first part of our paper outlines the history and value of ecological corridors. We next describe our methodologies for developing this guidance document. We then summarize the information about the impacts of linear features on corridors and strategies for dealing with them—specifically, we focus on the effects of roads, canals, security fences, and transmission lines. Following the description of effects, we provide a summary of the best practices for managing the impacts of linear barriers. Globally, many corridors are established in the flood plains of stream and rivers and occur in riparian areas associated with surface waters. Therefore, we next provide guidance on how to manage corridors that occur in riparian areas. We then segue into corridors and the urban/suburban environment, and summarize strategies for dealing with urban development within corridors. The final major anthropic land use that may affect corridor management is cultivation and grazing agriculture. We end this review by identifying gaps in knowledge pertaining to how best to manage corridors. 
    more » « less