The rapid increase in computing demand and corresponding energy consumption have focused attention on computing's impact on the climate and sustainability. Prior work proposes metrics that quantify computing's carbon footprint across several lifecycle phases, including its supply chain, operation, and end-of-life. Industry uses these metrics to optimize the carbon footprint of manufacturing hardware and running computing applications. Unfortunately, prior work on optimizing datacenters' carbon footprint often succumbs to the sunk cost fallacy by considering embodied carbon emissions (a sunk cost) when making operational decisions (i.e., job scheduling and placement), which leads to operational decisions that do not always reduce the total carbon footprint. In this paper, we evaluate carbon-aware job scheduling and placement on a given set of servers for several carbon accounting metrics. Our analysis reveals state-of-the-art carbon accounting metrics that include embodied carbon emissions when making operational decisions can increase the total carbon footprint of executing a set of jobs. We study the factors that affect the added carbon cost of such suboptimal decision-making. We then use a real-world case study from a datacenter to demonstrate how the sunk carbon fallacy manifests itself in practice. Finally, we discuss the implications of our findings in better guiding effective carbon-aware scheduling in on-premise and cloud datacenters.
more »
« less
SCARIF: Towards Carbon Modeling of Cloud Servers with Accelerators
Embodied carbon has been widely reported as a significant component in the full system lifecycle of various computing systems green house gas emissions. Many efforts have been undertaken to quantify the elements that comprise this embodied carbon, from tools that evaluate semiconductor manufacturing to those that can quantify different elements of the computing system from commercial and academic sources. However, these tools cannot easily reproduce results reported by server vendors' product carbon reports and the accuracy can vary substantially due to various assumptions. Furthermore, attempts to determine green house gas contributions using bottom-up methodologies often do not agree with system-level studies and are hard to rectify. Nonetheless, given there is a need to consider all contributions to green house gas emissions in datacenters, we propose SCARIF, the Server Carbon including Accelerator Reporter with Intelligence-based Formulation tool. SCARIF has three main contributions: (1) We first collect reported carbon cost data from server vendors and design statistic models to predict the embodied carbon cost so that users can get the embodied carbon cost for their server configurations. (2) We provide embodied carbon cost if users configure servers with accelerators including GPUs, and FPGAs. (3) By using case studies, we show that certain design choices of data center management might flip by the insight and observation from using SCARIF. Thus, SCARIF provides an opportunity for large-scale datacenter and hyperscaler design. We release SCARIF as an open-source tool at https://github.com/arc-research-lab/SCARIF.
more »
« less
- PAR ID:
- 10544217
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2159-3477
- ISBN:
- 979-8-3503-5411-9
- Page Range / eLocation ID:
- 496 to 501
- Subject(s) / Keyword(s):
- Sustainability Modeling Server Accelerator
- Format(s):
- Medium: X
- Location:
- Knoxville, TN, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Content Delivery Networks (CDNs) are Internet-scale systems that deliver streaming and web content to users from many geographically distributed edge data centers. Since large CDNs can comprise hundreds of thousands of servers deployed in thousands of global data centers, they can consume a large amount of energy for their operations and thus are responsible for large amounts of Green House Gas (GHG) emissions. As these networks scale to cope with increased demand for bandwidth-intensive content, their emissions are expected to rise further, making sustainable design and operation an important goal for the future. Since different geographic regions vary in the carbon intensity and cost of their electricity supply, in this paper, we consider spatial shifting as a key technique to jointly optimize the carbon emissions and energy costs of a CDN. We present two forms of shifting: spatial load shifting, which operates within the time scale of minutes, and VM capacity shifting, which operates at a coarse time scale of days or weeks. The proposed techniques jointly reduce carbon and electricity costs while considering the performance impact of increased request latency from such optimizations. Using real-world traces from a large CDN and carbon intensity and energy prices data from electric grids in different regions, we show that increasing the latency by 60ms can reduce carbon emissions by up to 35.5%, 78.6%, and 61.7% across the US, Europe, and worldwide, respectively. In addition, we show that capacity shifting can increase carbon savings by up to 61.2%. Finally, we analyze the benefits of spatial shifting and show that it increases carbon savings from added solar energy by 68% and 130% in the US and Europe, respectively.more » « less
-
The carbon footprint associated with large language models (LLMs) is a significant concern, encompassing emissions from their training, inference, experimentation, and storage processes, including operational and embodied carbon emissions. An essential aspect is accurately estimating the carbon impact of emerging LLMs even before their training, which heavily relies on GPU usage. Existing studies have reported the carbon footprint of LLM training, but only one tool, mlco2, can predict the carbon footprint of new neural networks prior to physical training. However, mlco2 has several serious limitations. It cannot extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards critical architectural parameters, focuses solely on GPUs, and cannot model embodied carbon footprints. Addressing these gaps, we introduce \textit{\carb}, an end-to-end carbon footprint projection model designed for both dense and MoE LLMs. Compared to mlco2, \carb~significantly enhances the accuracy of carbon footprint estimations for various LLMs. The source code is released at \url{https://github.com/SotaroKaneda/MLCarbon}.more » « less
-
The growing demands for computational power in cloud computing have led to a significant increase in the deployment of high-performance servers. The growing power consumption of servers and the heat they produce is on track to outpace the capacity of conventional air cooling systems, necessitating more efficient cooling solutions such as liquid immersion cooling. The superior heat exchange capabilities of immersion cooling both eliminates the need for bulky heat sinks, fans, and air flow channels while also unlocking the potential go beyond conventional 2D blade servers to three-dimensional designs. In this work, we present a computational framework to explore designs of servers in three-dimensional space, specifically targeting the maximization of server density within immersion cooling tanks. Our tool is designed to handle a variety of physical and electrical server design constraints. We demonstrate our optimized designs can reduce server volume by 25--52% compared to traditional flat server designs. This increased density reduces land usage as well as the amount of liquid used for immersion, with significant reduction in the carbon emissions embodied in datacenter buildings. We further create physical prototypes to simulate dense server designs and perform real-world experiments in an immersion cooling tank demonstrating they operate at safe temperatures. This approach marks a critical step forward in sustainable and efficient datacenter management.more » « less
-
Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.more » « less
An official website of the United States government

