skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 20, 2025

Title: CDN-Shifter: Leveraging Spatial Workload Shifting to Decarbonize Content Delivery Networks
Content Delivery Networks (CDNs) are Internet-scale systems that deliver streaming and web content to users from many geographically distributed edge data centers. Since large CDNs can comprise hundreds of thousands of servers deployed in thousands of global data centers, they can consume a large amount of energy for their operations and thus are responsible for large amounts of Green House Gas (GHG) emissions. As these networks scale to cope with increased demand for bandwidth-intensive content, their emissions are expected to rise further, making sustainable design and operation an important goal for the future. Since different geographic regions vary in the carbon intensity and cost of their electricity supply, in this paper, we consider spatial shifting as a key technique to jointly optimize the carbon emissions and energy costs of a CDN. We present two forms of shifting: spatial load shifting, which operates within the time scale of minutes, and VM capacity shifting, which operates at a coarse time scale of days or weeks. The proposed techniques jointly reduce carbon and electricity costs while considering the performance impact of increased request latency from such optimizations. Using real-world traces from a large CDN and carbon intensity and energy prices data from electric grids in different regions, we show that increasing the latency by 60ms can reduce carbon emissions by up to 35.5%, 78.6%, and 61.7% across the US, Europe, and worldwide, respectively. In addition, we show that capacity shifting can increase carbon savings by up to 61.2%. Finally, we analyze the benefits of spatial shifting and show that it increases carbon savings from added solar energy by 68% and 130% in the US and Europe, respectively.  more » « less
Award ID(s):
2325956 2213636
PAR ID:
10591368
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400712869
Page Range / eLocation ID:
505 to 521
Format(s):
Medium: X
Location:
Redmond WA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Content delivery networks (CDNs) cache and deliver hundreds of trillions of user requests each day from hundreds of thousands of servers around the world. The traffic served by CDNs can be partitioned into hundreds of traffic classes, each with different user access patterns, popularity distributions, object sizes, and performance requirements. Midgress is the cache miss traffic between the CDN's servers and the content provider origins. A major goal of a CDN is to minimize its midgress, since higher midgress translates to higher bandwidth costs and increased user-perceived latency. We propose algorithms that provision traffic classes to servers such that midgress is minimized. Using extensive traces from Akamai's CDN, we show that our midgress-aware traffic provisioning schemes can reduce midgress by nearly 20% in comparison with the midgress-unaware schemes currently in use. We also propose an efficient heuristic for traffic provisioning that achieves near-optimal midgress and is suitable for use in production settings. Further, we show how our algorithms can be extended to other settings that require minimum caching performance per traffic class and minimum content duplication for fault tolerance. Finally, our paper provides a strong case for implementing midgress-aware traffic provisioning in production CDNs. 
    more » « less
  2. Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
    more » « less
  3. Content Distribution Networks (CDNs) manage their own caching or routing overlay networks to provide reliable and efficient content delivery services. Currently, CDNs have become one of the most important tools on the Internet. They have been responsible for the majority of today's Internet traffic. The performance of CDNs directly influences the experiences of end users. In this paper, we develop several analyses to figure out the key factors influencing the overall performance of a CDN. The primary results demonstrate that the caching overlays and the routing overlays both have their own influential factors affecting CDN performance. Our results also show that the transmission latency between a surrogate and a content owner is a critical factor determining the overall performance of routing overlays. Furthermore, we argue that the surrogate assignment policy of a routing overlay need to seriously take this latency into account. Our analysis results provide a context for the CDN community on preferable surrogate assignment solutions. 
    more » « less
  4. Major innovations in computing have been driven by scaling up computing infrastructure, while aggressively optimizing operating costs. The result is a network of worldwide datacenters that consume a large amount of energy, mostly in an energy-efficient manner. Since the electric grid powering these datacenters provided a simple and opaque abstraction of an unlimited and reliable power supply, the computing industry remained largely oblivious to the carbon intensity of the electricity it uses. Much like the rest of the society, it generally treated the carbon intensity ofthe electricity as constant, which was mostly true fora fossil fuel-driven grid. As a result, the cost-driven objective of increasing energy-efficiency - by doing more work per unit of energy - has generally been viewed as the most carbon-efficient approach. However, as the electric grid is increasingly powered by clean energy and is exposing its time-varying carbon intensity, the most energy-efficient operation is no longer necessarily the most carbon-efficient operation. There has been a recent focus on exploiting the flexibility of computing's workloads-along temporal, spatial,and resource dimensions-to reduce carbon emissions,which comes at the cost ofeither perfor- mance or energy efficiency. In this paper, we discuss the trade-offs between energy efficiency and carbon efficiency in exploiting com- puting's flexibility and show that blindly optimizing for energy efficiency is not always the right approach. 
    more » « less
  5. Content Delivery Networks (CDNs) deliver much of the world’s web and video content to users from thousands of clusters deployed at the “edges” of the Internet. Maintain- ing consistent performance in this large distributed system is challenging. Through analysis of month-long logs from over 2000 clusters of a large CDN, we study the patterns of server unavailability. For a CDN with no redundancy, each server unavailability causes a sudden loss in performance as the objects previously cached on that server are not accessible, which leads to a miss ratio spike. The state-of-the-art miti- gation technique used by large CDNs is to replicate objects across multiple servers within a cluster. We find that although replication reduces miss ratio spikes, spikes remain a perfor- mance challenge. We present C2DN, the first CDN design that achieves a lower miss ratio, higher availability, higher resource efficiency, and close-to-perfect write load balancing. The core of our design is to introduce erasure coding into the CDN architecture and use the parity chunks to re-balance the write load across servers. We implement C2DN on top of open-source production software and demonstrate that com- pared to replication-based CDNs, C2DN obtains 11% lower byte miss ratio, eliminates unavailability-induced miss ratio spikes, and reduces write load imbalance by 99%. 
    more » « less