skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supersaturation of even linear cycles in linear hypergraphs
Abstract A classical result of Erdős and, independently, of Bondy and Simonovits [3] says that the maximum number of edges in ann-vertex graph not containingC2k, the cycle of length 2k, isO(n1+1/k). Simonovits established a corresponding supersaturation result forC2k’s, showing that there exist positive constantsC,cdepending only onksuch that everyn-vertex graphGwithe(G)⩾Cn1+1/kcontains at leastc(e(G)/v(G))2kcopies ofC2k, this number of copies tightly achieved by the random graph (up to a multiplicative constant). In this paper we extend Simonovits' result to a supersaturation result ofr-uniform linear cycles of even length inr-uniform linear hypergraphs. Our proof is self-contained and includes ther= 2 case. As an auxiliary tool, we develop a reduction lemma from general host graphs to almost-regular host graphs that can be used for other supersaturation problems, and may therefore be of independent interest.  more » « less
Award ID(s):
1855542
PAR ID:
10544237
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
29
Issue:
5
ISSN:
0963-5483
Page Range / eLocation ID:
698 to 721
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dirac proved that each $$n$$-vertex $$2$$-connected graph with minimum degree $$k$$ contains a cycle of length at least $$\min\{2k, n\}$$. We obtain analogous results for Berge cycles in hypergraphs. Recently, the authors proved an exact lower bound on the minimum degree ensuring a Berge cycle of length at least $$\min\{2k, n\}$$ in $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraphs when $$k \geq r+2$$. In this paper we address the case $$k \leq r+1$$ in which the bounds have a different behavior. We prove that each $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraph $$H$$ with minimum degree $$k$$ contains a Berge cycle of length at least $$\min\{2k,n,|E(H)|\}$$. If $$|E(H)|\geq n$$, this bound coincides with the bound of the Dirac's Theorem for 2-connected graphs. 
    more » « less
  2. Abstract A long-standing conjecture of Erdős and Simonovits asserts that for every rational number $$r\in (1,2)$$ there exists a bipartite graph H such that $$\mathrm{ex}(n,H)=\Theta(n^r)$$ . So far this conjecture is known to be true only for rationals of form $1+1/k$ and $2-1/k$ , for integers $$k\geq 2$$ . In this paper, we add a new form of rationals for which the conjecture is true: $2-2/(2k+1)$ , for $$k\geq 2$$ . This in turn also gives an affirmative answer to a question of Pinchasi and Sharir on cube-like graphs. Recently, a version of Erdős and Simonovits $$^{\prime}$$ s conjecture, where one replaces a single graph by a finite family, was confirmed by Bukh and Conlon. They proposed a construction of bipartite graphs which should satisfy Erdős and Simonovits $$^{\prime}$$ s conjecture. Our result can also be viewed as a first step towards verifying Bukh and Conlon $$^{\prime}$$ s conjecture. We also prove an upper bound on the Turán number of theta graphs in an asymmetric setting and employ this result to obtain another new rational exponent for Turán exponents: $r=7/5$ . 
    more » « less
  3. null (Ed.)
    Abstract The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a K r+ 1 -free graph on n vertices with e ( G ) > ex( n , K r +1 )– α n 2 , then one can remove εn 2 edges from G to obtain an r -partite graph. Füredi gave a short proof that one can choose α = ε . We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0. 
    more » « less
  4. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with positive real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph G = (V, E), vertex demands b ∈ R^V such that ∑_{v ∈ V} b(v) = 0, positive edge costs c ∈ R_{≥ 0}^E, and a parameter ε > 0. In O(ε^{-2} m log^{O(1)} n) time, it returns a flow f such that the net flow out of each vertex is equal to the vertex’s demand and the cost of the flow is within a (1 ± ε) factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the Ω(n²) vertex-vertex distances that an approximation of this kind suggests, we also take advantage of the clustering method used in the well-known Thorup-Zwick distance oracle. 
    more » « less
  5. Abstract Given two k -graphs ( k -uniform hypergraphs) F and H , a perfect F -tiling (or F -factor) in H is a set of vertex-disjoint copies of F that together cover the vertex set of H . For all complete k -partite k -graphs K , Mycroft proved a minimum codegree condition that guarantees a K -factor in an n -vertex k -graph, which is tight up to an error term o ( n ). In this paper we improve the error term in Mycroft’s result to a sublinear term that relates to the Turán number of K when the differences of the sizes of the vertex classes of K are co-prime. Furthermore, we find a construction which shows that our improved codegree condition is asymptotically tight in infinitely many cases, thus disproving a conjecture of Mycroft. Finally, we determine exact minimum codegree conditions for tiling K (k) (1, … , 1, 2) and tiling loose cycles, thus generalizing the results of Czygrinow, DeBiasio and Nagle, and of Czygrinow, respectively. 
    more » « less