skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Improving Robustness of Convolutional Networks Through Sleep-Like Replay
Convolutional neural networks (CNNs) are a foundational model architecture utilized to perform a wide variety of visual tasks. On image classification tasks CNNs achieve high performance, however model accuracy degrades quickly when inputs are perturbed by distortions such as additive noise or blurring. This drop in performance partly arises from incorrect detection of local features by convolutional layers. In this work, we develop a neuroscience-inspired unsupervised Sleep Replay Consolidation (SRC) algorithm for improving convolutional filter’s robustness to perturbations. We demonstrate that sleep- based optimization improves the quality of convolutional layers by the selective modification of spatial gradients across filters. We further show that, compared to other approaches such as fine- tuning, a single sleep phase improves robustness across different types of distortions in a data efficient manner.  more » « less
Award ID(s):
2223839
PAR ID:
10544252
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4534-6
Page Range / eLocation ID:
257 to 264
Format(s):
Medium: X
Location:
Jacksonville, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent advances in off-policy deep reinforcement learning (RL) have led to impressive success in complex tasks from visual observations. Experience replay improves sample-efficiency by reusing experiences from the past, and convolutional neural networks (CNNs) process high-dimensional inputs effectively. However, such techniques demand high memory and computational bandwidth. In this paper, we present Stored Embeddings for Efficient Reinforcement Learning (SEER), a simple modification of existing off-policy RL methods, to address these computational and memory requirements. To reduce the computational overhead of gradient updates in CNNs, we freeze the lower layers of CNN encoders early in training due to early convergence of their parameters. Additionally, we reduce memory requirements by storing the low-dimensional latent vectors for experience replay instead of high-dimensional images, enabling an adaptive increase in the replay buffer capacity, a useful technique in constrained-memory settings. In our experiments, we show that SEER does not degrade the performance of RL agents while significantly saving computation and memory across a diverse set of DeepMind Control environments and Atari games. Finally, we show that SEER is useful for computation-efficient transfer learning in RL because lower layers of CNNs extract generalizable features, which can be used for different tasks and domains. 
    more » « less
  2. Emerging standoff iris recognition systems operate under unconstrained conditions and the iris images captured by these systems are more subject to off-angle acquisition distortions. While deep learning techniques (e.g. convolutional neural networks (CNNs)) are increasingly becoming a tool of choice for iris segmentation tasks, yet there is a significant lack of information about how these distortions affect the performance of such networks. In this work, we thoroughly discuss the general effect of different gaze angles on ocular biometrics and relate the findings to off-angle iris segmentation using CNNs. In particular, we conduct systematical analysis on the impact of different gaze angles on segmentation performance of two CNNs with different architectures. The networks’ performance turns out to have a direct relation to the closeness of gaze-angles in the training and testing images, and it declines as the gaze angles diverge. We further investigate the effect of (i) increasing the quantity of iris training data in case of gaze angles in training and test data match, and (ii) considering iris training data consisting of several distinct gaze-angles (we obtain promising results using the second configuration). Finally, we compare our results to those of some classical iris segmentation algorithms, where the CNNs are found to outperform the classical algorithms. 
    more » « less
  3. Medical image segmentation has been so far achieving promising results with Convolutional Neural Networks (CNNs). However, it is arguable that in traditional CNNs, its pooling layer tends to discard important information such as positions. Moreover, CNNs are sensitive to rotation and ane transformation. Capsule network is a data-ecient network design proposed to overcome such limitations by replacing pooling layers with dynamic routing and convolutional strides, which aims to preserve the part-whole relationships. Capsule network has shown a great performance in image recognition and natural language processing, but applications for medical image segmentation, particularly volumetric image segmentation, has been limited. In this work, we propose 3D-UCaps, a 3D voxel-based Capsule network for medical volumetric image segmentation. We build the concept of capsules into a CNN by designing a network with two pathways: the rst pathway is encoded by 3D Capsule blocks, whereas the second pathway is decoded by 3D CNNs blocks. 3D-UCaps, therefore inherits the merits from both Capsule network to preserve the spatial relationship and CNNs to learn visual representation. We conducted experiments on various datasets to demonstrate the robustness of 3D-UCaps including iSeg-2017, LUNA16, Hippocampus, and Cardiac, where our method outperforms previous Capsule networks and 3D-Unets. 
    more » « less
  4. Encoding the scale information explicitly into the representation learned by a convolutional neural network (CNN) is beneficial for many computer vision tasks especially when dealing with multiscale inputs. We study, in this paper, a scaling-translation-equivariant (ST-equivariant) CNN with joint convolutions across the space and the scaling group, which is shown to be both sufficient and necessary to achieve equivariance for the regular representation of the scaling-translation group ST. To reduce the model complexity and computational burden, we decompose the convolutional filters under two pre-fixed separable bases and truncate the expansion to low-frequency components. A further benefit of the truncated filter expansion is the improved deformation robustness of the equivariant representation, a property which is theoretically analyzed and empirically verified. Numerical experiments demonstrate that the proposed scaling-translation-equivariant network with decomposed convolutional filters (ScDCFNet) achieves significantly improved performance in multiscale image classification and better interpretability than regular CNNs at a reduced model size. 
    more » « less
  5. Deformable Convolutional Networks (DCN) have been proposed as a powerful tool to boost the representation power of Convolutional Neural Networks (CNN) in computer vision tasks via adaptive sampling of the input feature map. Much like vision transformers, DCNs utilize a more flexible inductive bias than standard CNNs and have also been shown to improve performance of particular models. For example, drop-in DCN layers were shown to increase the AP score of Mask RCNN by 10.6 points while introducing only 1% additional parameters and FLOPs, improving the state-of-the art model at the time of publication. However, despite evidence that more DCN layers placed earlier in the network can further improve performance, we have not seen this trend continue with further scaling of deformations in CNNs, unlike for vision transformers. Benchmarking experiments show that a realistically sized DCN layer (64H×64W, 64 in-out channel) incurs a 4× slowdown on a GPU platform, discouraging the more ubiquitous use of deformations in CNNs. These slowdowns are caused by the irregular input-dependent access patterns of the bilinear interpolation operator, which has a disproportionately low arithmetic intensity (AI) compared to the rest of the DCN. To address the disproportionate slowdown of DCNs and enable their expanded use in CNNs, we propose DefT, a series of workload-aware optimizations for DCN kernels. DefT identifies performance bottlenecks in DCNs and fuses specific operators that are observed to limit DCN AI. Our approach also uses statistical information of DCN workloads to adapt the workload tiling to the DCN layer dimensions, minimizing costly out-of-boundary input accesses. Experimental results show that DefT mitigates up to half of DCN slowdown over the current-art PyTorch implementation. This translates to a layerwise speedup of up to 134% and a reduction of normalized training time of 46% on a fully DCN-enabled ResNet model. 
    more » « less