skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Tropical Convection Overshoots the Cold Point Tropopause Nearly as Often Over Warm Oceans as Over Land
Abstract Tropical convection that overshoots the cold point tropopause can impact the climate by directly influencing water vapor, temperatures, and thin cirrus in the upper troposphere‐lower stratosphere (UTLS) region. The distribution of cold point overshoots between land and ocean may help determine how the overshoots will affect the UTLS in a changing climate. Using 4 years of satellite and reanalysis data, we test a brightness temperature proxy calibrated by radar/lidar data to identify cold point‐overshooting convection across the global tropics. We find evidence of cold point‐overshooting convection throughout the tropics, though other cirrus above the cold point cover an area 100 times larger than overshooting tops. Cold point‐overshooting convection occurs 30%–40% more often over convectively active land areas than over the warmest oceans. This proxy can be generalized to evaluate the fidelity of cold point overshoots simulated by storm‐resolving models.  more » « less
Award ID(s):
1743753
PAR ID:
10544256
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cold point tropopause, the minimum temperature within the tropical upper troposphere‐lower stratosphere region (UTLS), significantly impacts Earth's climate by influencing the amount of water vapor entering the lower stratosphere. Understanding which mechanisms are most important in setting the cold point temperature and height may help us better predict how it will change in a future warmed climate. In this analysis we evaluate two mechanisms that may influence the cold point—cold point‐overshooting convection and the radiative lofting of thin cirrus near the cold point—during boreal winter by comparing 30‐day global storm‐resolving model (GSRM) simulations from the winter phase of the DYAMOND initiative to satellite observations. GSRMs have explicit deep convection and sufficiently fine grid spacings to simulate convective overshoots and UTLS cirrus, making them promising tools for this purpose. We find that the GSRMs reproduce the observed distribution of cold point‐overshooting convection but do not simulate enough cirrus capable of radiative lofting near the cold point. Both the models and observations show a strong relationship between areas of frequent cold point overshoots and colder cold points, suggesting that cold point‐overshooting convection has a notable influence on the mean cold point. However, we find little evidence that the radiative lofting of cold point cirrus substantially influences the cold point. Cold point‐overshooting convection alone cannot explain all variations in the cold point across different GSRMs or regions; future studies using longer GSRM simulations that consider longer‐term UTLS processes are needed to fully understand what sets the cold point. 
    more » « less
  2. Abstract Recent advances in computer modeling have spurred the production of several global storm‐resolving models (GSRMs), which explicitly represent atmospheric circulations from convective to global scales. As a result, GSRMs simulate the formation and evolution of tropical cirrus clouds more physically than typical global climate models/general circulation models (GCMs) which use parameterizations to represent deep convection. We analyze the output from nine GSRMs from the DYAMOND initiative, focusing on the second phase of DYAMOND that simulated a period in January–February 2020. This paper is the third in a series investigating tropical cirrus clouds in GSRMs using DYAMOND model output for an intercomparison. In the tropics, models capture the mean outgoing longwave radiation within −5 to 14 W m−2of observed climatology, though most models have more convective precipitation over the 40‐day simulation period than observed. While the models represent large‐scale tropical convection with some fidelity, large regional differences in cloud properties and top‐of‐atmosphere radiation fluxes exist. We focus on a region within the Tropical Western Pacific to study the small‐scale features available with the high spatiotemporal resolution of GSRMs. Most models that participated in both phases of DYAMOND capture the seasonal differences between the two phases, yet each model exhibits unique cloud populations that are persistent across seasons. GSRMs even simulate the notoriously difficult‐to‐observe tropical tropopause layer (TTL) cirrus, providing a novel perspective on TTL cirrus even though the models have different cloud characteristics over the short 40‐days simulation. 
    more » « less
  3. Abstract Tropical overshooting deep convections (ODCs) play a vital role in vertical transport of boundary layer pollutants, especially short‐lived species, to upper troposphere and lower stratosphere, with important implications for stratospheric ozone and climate. We use simulations from a global cloud‐system resolving model, Nonhydrostatic Icosahedral Atmosphere Model (NICAM), to study ODC changes from historical period to the end of the 21st century. NICAM well reproduces Tropical Rainfall Measuring Mission‐satellite observed ODC spatiotemporal patterns. The future occurrences of ODCs with cloud top height above 15.5, 16.9, and 18.4 km scaled by the global temperature increase will increase by 7%/K, 27%/K, and 90%/K, respectively, over ocean where the atmosphere is becoming warmer and wetter. The corresponding changes are −1%/K, 10%/K, and 37%/K over land where the atmosphere will become hotter but drier. Relative to tropical cold point tropopause height, ODCs will only change by 3%/K, with 6%/K over the ocean but −3%/K on land. 
    more » « less
  4. Abstract Climate change and global urbanization have often been anticipated to increase future population exposure (frequency and intensity) to extreme weather over the coming decades. Here we examine how changes in urban land extent, population, and climate will respectively and collectively affect spatial patterns of future population exposures to climate extremes (including hot days, cold days, heavy rainfalls, and severe thunderstorm environments) across the continental U.S. at the end of the 21st century. Different from common impressions, we find that urban land patterns can sometimes reduce rather than increase population exposures to climate extremes, even heat extremes, and that spatial patterns instead of total quantities of urban land are more influential to population exposures. Our findings lead to preliminary suggestions for embedding long-term climate resilience in urban and regional land-use system designs, and strongly motivate searches for optimal spatial urban land patterns that can robustly moderate population exposures to climate extremes throughout the 21st century. 
    more » « less
  5. Abstract Land-use land-cover change affects weather and climate. This paper quantifies land–atmosphere interactions over irrigated and nonirrigated land uses during the Great Plains Irrigation Experiment (GRAINEX). Three coupling metrics were used to quantify land–atmosphere interactions as they relate to convection. They include the convective triggering potential (CTP), the low-level humidity index (HIlow), and the lifting condensation level (LCL) deficit. These metrics were calculated from the rawinsonde data obtained from the Integrated Sounding Systems (ISSs) for Rogers Farm and York Airport along with soundings launched from the three Doppler on Wheels (DOW) sites. Each metric was categorized by intensive observation period (IOP), cloud cover, and time of day. Results show that with higher CTP, lower HIlow, and lower LCL deficit, conditions were more favorable for convective development over irrigated land use. When metrics were grouped and analyzed by IOP, compared to nonirrigated land use, HIlowwas found to be lower for irrigated land use, suggesting favorable conditions for convective development. Furthermore, when metrics were grouped and analyzed by clear and nonclear days, CTP values were higher over irrigated cropland than nonirrigated land use. In addition, compared to nonirrigated land use, the LCL deficit during the peak growing season was lower over irrigated land use, suggesting a favorable condition for convection. It is found that with the transition from the early summer to the mid/peak summer and increased irrigation, the environment became more favorable for convective development over irrigated land use. Finally, it was found that regardless of background atmospheric conditions, irrigated land use provided a favorable environment for convective development. 
    more » « less