skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CR-SAM: Curvature Regularized Sharpness-Aware Minimization
The capacity to generalize to future unseen data stands as one of the utmost crucial attributes of deep neural networks. Sharpness-Aware Minimization (SAM) aims to enhance the generalizability by minimizing worst-case loss using one-step gradient ascent as an approximation. However, as training progresses, the non-linearity of the loss landscape increases, rendering one-step gradient ascent less effective. On the other hand, multi-step gradient ascent will incur higher training cost. In this paper, we introduce a normalized Hessian trace to accurately measure the curvature of loss landscape on both training and test sets. In particular, to counter excessive non-linearity of loss landscape, we propose Curvature Regularized SAM (CR-SAM), integrating the normalized Hessian trace as a SAM regularizer. Additionally, we present an efficient way to compute the trace via finite differences with parallelism. Our theoretical analysis based on PAC-Bayes bounds establishes the regularizer's efficacy in reducing generalization error. Empirical evaluation on CIFAR and ImageNet datasets shows that CR-SAM consistently enhances classification performance for ResNet and Vision Transformer (ViT) models across various datasets. Our code is available at https://github.com/TrustAIoT/CR-SAM.  more » « less
Award ID(s):
2008878
PAR ID:
10544299
Author(s) / Creator(s):
; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
6
ISSN:
2159-5399
Page Range / eLocation ID:
6144 to 6152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Daumé, H; Singh, A (Ed.)
    An acknowledged weakness of neural networks is their vulnerability to adversarial perturbations to the inputs. To improve the robustness of these models, one of the most popular defense mechanisms is to alternatively maximize the loss over the constrained perturbations (or called adversaries) on the inputs using projected gradient ascent and minimize over weights. In this paper, we analyze the dynamics of the maximization step towards understanding the experimentally observed effectiveness of this defense mechanism. Specifically, we investigate the non-concave landscape of the adversaries for a two-layer neural network with a quadratic loss. Our main result proves that projected gradient ascent finds a local maximum of this non-concave problem in a polynomial number of iterations with high probability. To our knowledge, this is the first work that provides a convergence analysis of the first-order adversaries. Moreover, our analysis demonstrates that, in the initial phase of adversarial training, the scale of the inputs matters in the sense that a smaller input scale leads to faster convergence of adversarial training and a “more regular” landscape. Finally, we show that these theoretical findings are in excellent agreement with a series of experiments. 
    more » « less
  2. Traditional analyses of gradient descent show that when the largest eigenvalue of the Hessian, also known as the sharpness S(θ), is bounded by 2/η, training is "stable" and the training loss decreases monotonically. Recent works, however, have observed that this assumption does not hold when training modern neural networks with full batch or large batch gradient descent. Most recently, Cohen et al. (2021) observed two important phenomena. The first, dubbed progressive sharpening, is that the sharpness steadily increases throughout training until it reaches the instability cutoff 2/η. The second, dubbed edge of stability, is that the sharpness hovers at 2/η for the remainder of training while the loss continues decreasing, albeit non-monotonically. We demonstrate that, far from being chaotic, the dynamics of gradient descent at the edge of stability can be captured by a cubic Taylor expansion: as the iterates diverge in direction of the top eigenvector of the Hessian due to instability, the cubic term in the local Taylor expansion of the loss function causes the curvature to decrease until stability is restored. This property, which we call self-stabilization, is a general property of gradient descent and explains its behavior at the edge of stability. A key consequence of self-stabilization is that gradient descent at the edge of stability implicitly follows projected gradient descent (PGD) under the constraint S(θ)≤2/η. Our analysis provides precise predictions for the loss, sharpness, and deviation from the PGD trajectory throughout training, which we verify both empirically in a number of standard settings and theoretically under mild conditions. Our analysis uncovers the mechanism for gradient descent's implicit bias towards stability. 
    more » « less
  3. The training of over-parameterized neural networks has received much study in recent literature. An important consideration is the regularization of over-parameterized networks due to their highly nonconvex and nonlinear geometry. In this paper, we study noise injection algorithms, which can regularize the Hessian of the loss, leading to regions with flat loss surfaces. Specifically, by injecting isotropic Gaussian noise into the weight matrices of a neural network, we can obtain an approximately unbiased estimate of the trace of the Hessian. However, naively implementing the noise injection via adding noise to the weight matrices before backpropagation presents limited empirical improvements. To address this limitation, we design a two-point estimate of the Hessian penalty, which injects noise into the weight matrices along both positive and negative directions of the random noise. In particular, this two-point estimate eliminates the variance of the first-order Taylor's expansion term on the Hessian. We show a PAC-Bayes generalization bound that depends on the trace of the Hessian (and the radius of the weight space), which can be measured from data. We conduct a detailed experimental study to validate our approach and show that it can effectively regularize the Hessian and improve generalization. First, our algorithm can outperform prior approaches on sharpness-reduced training, delivering up to a 2.4% test accuracy increase for fine-tuning ResNets on six image classification datasets. Moreover, the trace of the Hessian reduces by 15.8%, and the largest eigenvalue is reduced by 9.7% with our approach. We also find that the regularization of the Hessian can be combined with alternative regularization methods, such as weight decay and data augmentation, leading to stronger regularization. Second, our approach remains highly effective for improving generalization in pretraining multimodal CLIP models and chain-of-thought fine-tuning. 
    more » « less
  4. We consider the development of practical stochastic quasi-Newton, and in particular Kronecker-factored block diagonal BFGS and L-BFGS methods, for training deep neural networks (DNNs). In DNN training, the number of variables and components of the gradient n is often of the order of tens of millions and the Hessian has n^ 2 elements. Consequently, computing and storing a full n times n BFGS approximation or storing a modest number of (step, change in gradient) vector pairs for use in an L-BFGS implementation is out of the question. In our proposed methods, we approximate the Hessian by a block-diagonal matrix and use the structure of the gradient and Hessian to further approximate these blocks, each of which corresponds to a layer, as the Kronecker product of two much smaller matrices. This is analogous to the approach in KFAC, which computes a Kronecker-factored block diagonal approximation to the Fisher matrix in a stochastic natural gradient method. Because the indefinite and highly variable nature of the Hessian in a DNN, we also propose a new damping approach to keep the upper as well as the lower bounds of the BFGS and L-BFGS approximations bounded. In tests on autoencoder feed-forward network models with either nine or thirteen layers applied to three datasets, our methods outperformed or performed comparably to KFAC and state-of-the-art first-order stochastic methods. 
    more » « less
  5. The second-order properties of the training loss have a massive impact on the optimization dynamics of deep learning models. Fort & Scherlis (2019) discovered that a large excess of positive curvature and local convexity of the loss Hessian is associated with highly trainable initial points located in a region coined the "Goldilocks zone". Only a handful of subsequent studies touched upon this relationship, so it remains largely unexplained. In this paper, we present a rigorous and comprehensive analysis of the Goldilocks zone for homogeneous neural networks. In particular, we derive the fundamental condition resulting in excess of positive curvature of the loss, explaining and refining its conventionally accepted connection to the initialization norm. Further, we relate the excess of positive curvature to model confidence, low initial loss, and a previously unknown type of vanishing cross-entropy loss gradient. To understand the importance of excessive positive curvature for trainability of deep networks, we optimize fully-connected and convolutional architectures outside the Goldilocks zone and analyze the emergent behaviors. We find that strong model performance is not perfectly aligned with the Goldilocks zone, calling for further research into this relationship. 
    more » « less