skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential theory and quasisymmetric maps between compact Ahlfors regular metric measure spaces via Besov functions: preliminary
We study Besov capacities in a compact Ahlfors regular metric measure space by means of hyperbolic fillings of the space.This approach is applicable even if the space does not support any Poincar´e inequalities. As an application of the Besov capacity estimates we show that if a homeomorphism between two Ahlfors regular metric mea- sure spaces preserves, under some additional assumptions, certain Besov classes, then the homeomorphism is necessarily a quasisymmetric map.  more » « less
Award ID(s):
2054960
PAR ID:
10544312
Author(s) / Creator(s):
;
Publisher / Repository:
Yokohama Publishers
Date Published:
Journal Name:
Pute and Applied Functional Analysis
Volume:
9
Issue:
1
ISSN:
2189-3756
Page Range / eLocation ID:
231-249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Xiao, Jie; Lenhart, Suzanne (Ed.)
    In this note we deconstruct and explore the components of a theorem of Carrasco Piaggio, which relates Ahlfors regular conformal gauge of a compact doubling metric space to weights on Gromov-hyperbolic fillings of the metric space. We consider a construction of hyperbolic filling that is simpler than the one considered by Carrasco Piaggio, and we determine the effect of each of the four properties postulated by Carrasco Piaggio on the induced metric on the compact metric space. 
    more » « less
  2. In the context of a metric measure space \((X,d,\mu)\), we explore the potential-theoretic implications of having a finite-dimensional Besov space. We prove that if the dimension of the Besov space \(B^\theta_{p,p}(X)\) is \(k>1\), then \(X\) can be decomposed into \(k\) number of irreducible components (Theorem 1.1). Note that \(\theta\) may be bigger than \(1\), as our framework includes fractals. We also provide sufficient conditions under which the dimension of the Besov space is 1. We introduce critical exponents \(\theta_p(X)\) and \(\theta_p^{\ast}(X)\) for the Besov spaces. As examples illustrating Theorem 1.1, we compute these critical exponents for spaces \(X\) formed by glueing copies of \(n\)-dimensional cubes, the Sierpiński gaskets, and of the Sierpiński carpet. 
    more » « less
  3. We prove that for all integers 2≤m≤d−1, there exists doubling measures on ℝd with full support that are m-rectifiable and purely (m−1)-unrectifiable in the sense of Federer (i.e. without assuming μ≪m). The corresponding result for 1-rectifiable measures is originally due to Garnett, Killip, and Schul (2010). Our construction of higher-dimensional Lipschitz images is informed by a simple observation about square packing in the plane: N axis-parallel squares of side length s pack inside of a square of side length ⌈N1/2⌉s. The approach is robust and when combined with standard metric geometry techniques allows for constructions in complete Ahlfors regular metric spaces. One consequence of the main theorem is that for each m∈{2,3,4} and s0, f(E) has Hausdorff dimension s, and μ(f(E))>0. This is striking, because m(f(E))=0 for every Lipschitz map f:E⊂ℝm→ℍ1 by a theorem of Ambrosio and Kirchheim (2000). Another application of the square packing construction is that every compact metric space 𝕏 of Assouad dimension strictly less than m is a Lipschitz image of a compact set E⊂[0,1]m. Of independent interest, we record the existence of doubling measures on complete Ahlfors regular metric spaces with prescribed lower and upper Hausdorff and packing dimensions. 
    more » « less
  4. null (Ed.)
    In this paper, we study the asymptotic behavior of BV functions in complete metric measure spaces equipped with a doubling measure supporting a 1-Poincare inequality. We show that at almost every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a set E of finite perimeter, there is an asymptotic limit set (E)∞ corresponding to the asymptotic expansion of E and that every such asymptotic limit (E)∞ is a quasiminimal set of finite perimeter. We also show that the perimeter measure of (E)∞ is Ahlfors co-dimension 1 regular. 
    more » « less
  5. Let \(\Sigma\) be a closed subset of \(\mathbb{R}^{n+1}\) which is parabolic Ahlfors-David regular and assume that \(\Sigma\) satisfies a 2-sided corkscrew condition. Assume, in addition, that \(\Sigma\) is either time-forwards Ahlfors-David regular, time-backwards Ahlfors-David regular, or parabolic uniform rectifiable. We then first prove that \(\Sigma\) satisfies a weak synchronized two cube condition. Based on this we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that \(\Sigma\) contain suniform big pieces of Lip(1,1/2) graphs. When \(\Sigma\) is parabolic uniformly rectifiable the construction can be refined and in this case we prove that \(\Sigma\) contains uniform big pieces of regular parabolic Lip(1,1/2) graphs. Similar results hold if \(\Omega\subset\mathbb{R}^{n+1}\) is a connected component of \(\mathbb{R}^{n+1}\setminus\Sigma\) and in this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by proving that if \(\Omega\) is a one-sided parabolic chord arc domain, and if \(\Sigma\) is parabolic uniformly rectifiable, then \(\Omega\) is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces of Lipschitz graphs for sets satisfying a two disc condition. 
    more » « less