skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust anomaly detection for particle physics using multi-background representation learning
Abstract Anomaly, or out-of-distribution, detection is a promising tool for aiding discoveries of new particles or processes in particle physics. In this work, we identify and address two overlooked opportunities to improve anomaly detection (AD) for high-energy physics. First, rather than train a generative model on the single most dominant background process, we build detection algorithms using representation learning from multiple background types, thus taking advantage of more information to improve estimation of what is relevant for detection. Second, we generalize decorrelation to the multi-background setting, thus directly enforcing a more complete definition of robustness for AD. We demonstrate the benefit of the proposed robust multi-background AD algorithms on a high-dimensional dataset of particle decays at the Large Hadron Collider.  more » « less
Award ID(s):
1922658
PAR ID:
10544443
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Machine Learning: Science and Technology
Volume:
5
Issue:
3
ISSN:
2632-2153
Format(s):
Medium: X Size: Article No. 035082
Size(s):
Article No. 035082
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Experiments at particle colliders are the primary source of insight into physics at microscopic scales. Searches at these facilities often rely on optimization of analyses targeting specific models of new physics. Increasingly, however, data-driven model-agnostic approaches based on machine learning are also being explored. A major challenge is that such methods can be highly sensitive to the presence of many irrelevant features in the data. This paper presents Boosted Decision Tree (BDT)-based techniques to improve anomaly detection in the presence of many irrelevant features. First, a BDT classifier is shown to be more robust than neural networks for the Classification Without Labels approach to finding resonant excesses assuming independence of resonant and non-resonant observables. Next, a tree-based probability density estimator using copula transformations demonstrates significant stability and improved performance over normalizing flows as irrelevant features are added. The results make a compelling case for further development of tree-based algorithms for more robust resonant anomaly detection in high energy physics. 
    more » « less
  2. Abstract In this study, we investigate the application of the New Physics Learning Machine (NPLM) algorithm as an alternative to the standard CWoLa method with Boosted Decision Trees (BDTs), particularly for scenarios with rare signal events. NPLM offers an end-to-end approach to anomaly detection and hypothesis testing by utilizing an in-sample evaluation of a binary classifier to estimate a log-density ratio, which can improve detection performance without prior assumptions on the signal model. We examine two approaches: (1) a end-to-end NPLM application in cases with reliable background modelling and (2) an NPLM-based classifier used for signal selection when accurate background modelling is unavailable, with subsequent performance enhancement through a hyper-test on multiple values of the selection threshold. Our findings show that NPLM-based methods outperform BDT-based approaches in detection performance, particularly in low signal injection scenarios, while significantly reducing epistemic variance due to hyperparameter choices. This work highlights the potential of NPLM for robust resonant anomaly detection in particle physics, setting a foundation for future methods that enhance sensitivity and consistency under signal variability. 
    more » « less
  3. To maximize the discovery potential of high-energy colliders, experimental searches should be sensitive to unforeseen new physics scenarios. This goal has motivated the use of machine learning for unsupervised anomaly detection. In this paper, we introduce a new anomaly detection strategy called : factorized observables for regressing conditional expectations. Our approach is based on the inductive bias of factorization, which is the idea that the physics governing different energy scales can be treated as approximately independent. Assuming factorization holds separately for signal and background processes, the appearance of nontrivial correlations between low- and high-energy observables is a robust indicator of new physics. Under the most restrictive form of factorization, a machine-learned model trained to identify such correlations will in fact converge to the optimal new physics classifier. We test on a benchmark anomaly detection task for the Large Hadron Collider involving collimated sprays of particles called jets. By teasing out correlations between the kinematics and substructure of jets, our method can reliably extract percent-level signal fractions. This strategy for uncovering new physics adds to the growing toolbox of anomaly detection methods for collider physics with a complementary set of assumptions. Published by the American Physical Society2024 
    more » « less
  4. Abstract This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8–6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods—based on unsupervised, weakly supervised, and semisupervised algorithms—are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb−1, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models. 
    more » « less
  5. The push to automate and digitize the electric grid has led to widespread installation of Phasor Measurement Units (PMUs) for improved real-time wide-area system monitoring and control. Nevertheless, transforming large volumes of highresolution PMU measurements into actionable insights remains challenging. A central challenge is creating flexible and scalable online anomaly detection in PMU data streams. PMU data can hold multiple types of anomalies arising in the physical system or the cyber system (measurements and communication networks). Increasing the grid situational awareness for noisy measurement data and Bad Data (BD) anomalies has become more and more significant. Number of machine learning, data analytics and physics based algorithms have been developed for anomaly detection, but need to be validated with realistic synchophasor data. Access to field data is very challenging due to confidentiality and security reasons. This paper presents a method for generating realistic synchrophasor data for the given synthetic network as well as event and bad data detection and classification algorithms. The developed algorithms include Bayesian and change-point techniques to identify anomalies, a statistical approach for event localization and multi-step clustering approach for event classification. Developed algorithms have been validated with satisfactory results for multiple examples of power system events including faults and load/generator/capacitor variations/switching for an IEEE test system. Set of synchrophasor data will be available publicly for other researchers. 
    more » « less