Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
                        more » 
                        « less   
                    
                            
                            Realistic Synchrophasor Data Generation for Anomaly Detection and Event Classification
                        
                    
    
            The push to automate and digitize the electric grid has led to widespread installation of Phasor Measurement Units (PMUs) for improved real-time wide-area system monitoring and control. Nevertheless, transforming large volumes of highresolution PMU measurements into actionable insights remains challenging. A central challenge is creating flexible and scalable online anomaly detection in PMU data streams. PMU data can hold multiple types of anomalies arising in the physical system or the cyber system (measurements and communication networks). Increasing the grid situational awareness for noisy measurement data and Bad Data (BD) anomalies has become more and more significant. Number of machine learning, data analytics and physics based algorithms have been developed for anomaly detection, but need to be validated with realistic synchophasor data. Access to field data is very challenging due to confidentiality and security reasons. This paper presents a method for generating realistic synchrophasor data for the given synthetic network as well as event and bad data detection and classification algorithms. The developed algorithms include Bayesian and change-point techniques to identify anomalies, a statistical approach for event localization and multi-step clustering approach for event classification. Developed algorithms have been validated with satisfactory results for multiple examples of power system events including faults and load/generator/capacitor variations/switching for an IEEE test system. Set of synchrophasor data will be available publicly for other researchers. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10187033
- Date Published:
- Journal Name:
- 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Timely and accurate detection of events affecting the stability and reliability of power transmission systems is crucial for safe grid operation. This paper presents an efficient unsupervised machine-learning algorithm for event detection using a combination of discrete wavelet transform (DWT) and convolutional autoencoders (CAE) with synchrophasor phasor measurements. These measurements are collected from a hardware-in-the-loop testbed setup equipped with a digital real-time simulator. Using DWT, the detail coefficients of measurements are obtained. Next, the decomposed data is then fed into the CAE that captures the underlying structure of the transformed data. Anomalies are identified when significant errors are detected between input samples and their reconstructed outputs. We demonstrate our approach on the IEEE-14 bus system considering different events such as generator faults, line-to-line faults, line-to-ground faults, load shedding, and line outages simulated on a real-time digital simulator (RTDS). The proposed implementation achieves a classification accuracy of 97.7%, precision of 98.0%, recall of 99.5%, F1 Score of 98.7%, and proves to be efficient in both time and space requirements compared to baseline approaches.more » « less
- 
            This paper proposes a data-driven method to pinpoint the source of a new emerging dynamical phenomenon in the power grid, referred to “forced oscillations” in the difficult but highly risky case where there is a resonance phenomenon. By exploiting the low-rank and sparse properties of synchrophasor measurements, the localization problem is formulated as a matrix decomposition problem, which can be efficiently solved by the exact augmented Lagrange multiplier algorithm. An online detection scheme is developed based on the problem formulation. The data-driven nature of the proposed method allows for a very efficient implementation. The efficacy of the proposed method is illustrated in a 68-bus power system. The proposed method may possibly be more broadly useful in other situations for identifying the source of forced oscillations in resonant systems. Index Terms—Forced oscillations, resonant systems, phasor measurement unit (PMU), robust principal component analysis (RPCA), Big Data.more » « less
- 
            Phasor Measurement Units (PMU), due to their capability for providing highly precise and time-synchronized measurements of synchrophasors, have now become indispensable in wide area monitoring of power-grid systems. Successful and reliable delivery of synchrophasor packets from the PMUs to the Phasor Data Concentrators (PDCs) and beyond, requires a backbone communication network that is robust and resilient to failures. These networks are vulnerable to a range of failures that include cyber-attacks, system or device level outages and link failures. In this paper, we present a framework to evaluate the resilience of a PMU network in the context of link failures. We model the PMU network as a connected graph and link failures as edges being removed from the graph. Our approach, inspired by model checking methods, involves exhaustively checking the reachability of PMU nodes to PDC nodes, for all possible combinations of link failures, given an expected number of links fail simultaneously. Using the IEEE 14-bus system, we illustrate the construction of the graph model and the solution design. Finally, a comparative evaluation on how adding redundant links to the network improves the Power System Observability, is performed on the IEEE 118 bus-system.more » « less
- 
            As the phasor measurement unit (PMU) placement problem involves a cost-benefit trade-off, more PMUs get placed on higher-voltage buses. However, this leads to the fact that many lower-voltage levels of the bulk power system cannot be observed by PMUs. This lack of visibility then makes time-synchronized state estimation of the full system a challenging problem. In this paper, a deep neural network-based state estimator (DeNSE) is proposed to solve this problem. The DeNSE employs a Bayesian framework to indirectly combine the inferences drawn from slow-timescale but widespread supervisory control and data acquisition (SCADA) data with fast-timescale but selected PMU data, to attain sub-second situational awareness of the full system. The practical utility of the DeNSE is demonstrated by considering topology change, non-Gaussian measurement noise, and detection and correction of bad data. The results obtained using the IEEE 118-bus system demonstrate the superiority of the DeNSE over a purely SCADA state estimator and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, the scalability of the DeNSE is proven by estimating the states of a large and realistic 2000-bus synthetic Texas system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    