skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Fertilization Outcome in a Changing World
Synopsis Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.  more » « less
Award ID(s):
1754949
PAR ID:
10544501
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
64
Issue:
3
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 905-920
Size(s):
p. 905-920
Sponsoring Org:
National Science Foundation
More Like this
  1. Escriva, Hector (Ed.)
    In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are broadcast spawners, releasing eggs and sperm into the water column for fertilization. We conducted two experiments to investigate: 1) the impact of water temperature on sperm swimming characteristics and fertilization rate in sand dollars (Dendraster excentricus; temperatures 8-38°C) and sea urchins (Mesocentrotus franciscanus; temperatures 8-28°C) and; 2) the combined effects of multiple stressors (water temperature and pH) on these traits in sand dollars. We quantify thermal performance curves showing that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range of water temperatures experienced by sand dollars at our field sites. For sand dollars, both temperature (8, 16, 24°C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature influenced sperm swimming velocity and motility. Although sperm velocities and fertilization were positively correlated, our fertilization kinetics model dramatically overestimated measured rates and this discrepancy was most pronounced under extreme temperature and pH conditions. Our results suggest that environmental stressors like temperature and pH likely impair aspects of the reproductive process beyond simple sperm swimming behavior. 
    more » « less
  2. null (Ed.)
    Species-specific sperm−egg interactions are essential for sexual reproduction. Broadcast spawning of marine organisms is under particularly stringent conditions, since eggs released into the water column can be exposed to multiple different sperm. Bindin isolated from the sperm acrosome results in insoluble particles that cause homospecific eggs to aggregate, whereas no aggregation occurs with heterospecific eggs. Therefore, Bindin is concluded to play a critical role in fertilization, yet its function has never been tested. Here we report that Cas9-mediated inactivation of the bindin gene in a sea urchin results in perfectly normal-looking embryos, larvae, adults, and gametes in both males and females. What differed between the genotypes was that the bindin −/− sperm never fertilized an egg, functionally validating Bindin as an essential gamete interaction protein at the level of sperm–egg cell surface binding. 
    more » « less
  3. ABSTRACT Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness. 
    more » « less
  4. To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges. 
    more » « less
  5. As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardenedAcropora cervicornisto explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios. 
    more » « less