skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of temperature and pH on the reproductive ecology of sand dollars and sea urchins: Impacts on sperm swimming and fertilization
In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are broadcast spawners, releasing eggs and sperm into the water column for fertilization. We conducted two experiments to investigate: 1) the impact of water temperature on sperm swimming characteristics and fertilization rate in sand dollars (Dendraster excentricus; temperatures 8-38°C) and sea urchins (Mesocentrotus franciscanus; temperatures 8-28°C) and; 2) the combined effects of multiple stressors (water temperature and pH) on these traits in sand dollars. We quantify thermal performance curves showing that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range of water temperatures experienced by sand dollars at our field sites. For sand dollars, both temperature (8, 16, 24°C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature influenced sperm swimming velocity and motility. Although sperm velocities and fertilization were positively correlated, our fertilization kinetics model dramatically overestimated measured rates and this discrepancy was most pronounced under extreme temperature and pH conditions. Our results suggest that environmental stressors like temperature and pH likely impair aspects of the reproductive process beyond simple sperm swimming behavior.  more » « less
Award ID(s):
2149705
PAR ID:
10613253
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Escriva, Hector
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0276134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine heatwaves (MHWs) are projected to increase in intensity and frequency over the coming decades, and it is imperative to assess the adaptive capacity of marine organisms to these extreme temperature events. Given the nature of MHWs to last days to weeks in a region, these events may have overarching impacts on phenological events like reproduction and development. Here, the role of adult thermal history and transgenerational plasticity may be an important pathway by which MHWs are transduced to impact community structure. In this study, we sought to explore the effects of paternal thermal history in the purple urchin,Strongylocentrotus purpuratus, on a crucial aspect of reproduction, fertilization. Using ecologically relevant temperatures representative of both MHW events that occurred in 2014–2020 and non-MHW temperatures in our region of the California Large Marine Ecosystem, we conditioned maleS. purpuratusfor 28 days to either a high, MHW or a low, non-MHW temperature. Following the temperature acclimation of adults, sperm performance was tested for individual males by conducting fertilization success trials at varying temperatures and sperm concentrations. While sperm appeared robust to elevated temperature during fertilization, sperm produced by high-temperature-acclimated males had overall diminished performance as compared to those acclimated to non-MHW temperatures. These results suggest MHW events will have a negative impact on fertilization in situ forS. purpuratuspopulations. Furthermore, these results highlight the importance of considering both male and female environmental history in projections of reproduction under climate change scenarios. 
    more » « less
  2. Most stony corals liberate their gametes into the water column via broadcast spawning, where fertilization hinges upon the activation of directional sperm motility. Sperm from gonochoric and hermaphroditic corals display distinct morphological and molecular phenotypes, yet it is unknown whether the signalling pathways controlling sperm motility are also distinct between these sexual systems. Here, we addressed this knowledge gap using the gonochoric, broadcast spawning coralAstrangia poculata. We found that cytosolic alkalinization of sperm activates the pH-sensing enzyme soluble adenylyl cyclase (sAC), which is required for motility. Additionally, we demonstrate for the first time in any cnidarian that sAC activity leads to protein kinase A (PKA) activation, and that PKA activity contributes to sperm motility activation. Ultrastructures ofA. poculatasperm displayed morphological homology with other gonochoric cnidarians, and sAC exhibited broad structural and functional conservation across this phylum. These results indicate a conserved role for pH-dependent sAC-cAMP-PKA signalling in sperm motility across coral sexual systems, and suggest that the role of this pathway in sperm motility may be ancestral in metazoans. Finally, the dynamics of this pH-sensitive pathway may play a critical role in determining the sensitivity of marine invertebrate reproduction to anthropogenic ocean acidification. 
    more » « less
  3. Giant kelpMacrocystis pyriferaprovides the foundation for immense biodiversity on the coast of California, USA. Kelp forests can change seawater retention time, altering water chemistry, including pH and dissolved oxygen (DO), as well as the magnitude and predictability of variability in the same properties. Environmental heterogeneity across space and time could drive organismal performance and processes such as transgenerational plasticity (TGP), where parental experience modifies the offspring phenotype, potentially conferring tolerance to future environmental stress. We monitored environmental variability by deploying temperature, pH, and DO sensors inside and outside a temperate kelp forest in the Santa Barbara Channel (SBC) throughout the gametogenesis period of a key herbivore, the purple urchinStrongylocentrotus purpuratus. Over the 6 mo period, pH and temperature were slightly elevated inside the kelp forest, accompanied by more predictable, low-frequency variability relative to outside. AdultS. purpuratuswere conditioned inside and outside the kelp spanning gametogenesis. The urchins were spawned and their larvae were raised under high (1053 µatm) and lowpCO2(435 µatm) at 15°C in the laboratory to assess their physiological response to the maternal and developmental environments. Larvae raised under highpCO2were more susceptible to acute thermal stress; however, within each larval treatment, progeny from outside-conditioned mothers had a 0.4°C higher lethal temperature (LT50). Our results indicate that heterogeneity in abiotic factors associated with kelp can have transgenerational effects in the field, and interactions between factors, including temperature and pH, will impact purple urchins as local variability associated with marine heatwaves and upwelling evolves with climate change. 
    more » « less
  4. Copepods, which play major roles in marine food webs and biogeochemical cycling, frequently undergo diel vertical migration (DVM), swimming downwards during the day to avoid visual predation and upwards at night to feed. Natural water columns that are stratified with chemical stressors at depth, such as hypoxia and acidification, are increasing with climate change. Understanding behavioral responses of copepods to these stresses—in particular, whether copepods alter their natural migration—is important to anticipating impacts of climate change on marine ecosystems. We conducted laboratory experiments using stratified water columns to measure the effects of bottom water hypoxia and pH on mortality, distribution, and swimming behaviors of the calanoid copepodCalanuspacificus. When exposed to hypoxic (0.65 mg O2l-1) bottom waters, the height ofC.pacificusfrom the bottom increased 20% within hypoxic columns, and swimming speed decreased 46% at the bottom of hypoxic columns and increased 12% above hypoxic waters. When exposed to low pH (7.48) bottom waters, swimming speeds decreased by 8 and 9% at the base of the tanks and above acidic waters, respectively. Additionally, we found a 118% increase in ‘moribund’ (immobile on the bottom) copepods when exposed to hypoxic, but not acidic, bottom waters. Some swimming statistics differed between copepods collected from sites with versus without historical hypoxia and acidity. Observed responses suggest potential mechanisms underlyinginsituchanges in copepod population distributions when exposed to chemical stressors at depth. 
    more » « less
  5. Cyr, Frédéric (Ed.)
    Modern calcifying marine organisms face numerous environmental stressors, including overfishing, deoxygenation, increasing ocean temperatures, and ocean acidification (OA). Coastal marine settings are predicted to become warmer and more acidic in coming decades, heightening the risks of extreme events such as marine heat waves. Given these threats, it is important to understand the vulnerabilities of marine organisms that construct their shells from calcium carbonate, which are particularly susceptible to warming and decreasing pH levels. To investigate the response of four commercially relevant bivalve species to OA and differing temperatures, juvenileMercenaria mercenaria(hard shell clams), juvenileMya arenaria(soft shell clams), adult and juvenileArctica islandica(ocean quahog), and juvenilePlacopecten magellanicus(Atlantic sea scallops) were grown in varying pH and temperature conditions. Species were exposed to four controlled pH conditions (7.4, 7.6, 7.8, and ambient/8.0) and three controlled temperature conditions (6, 9, and 12°C) for 20.5 weeks and then shell growth and coloration were analyzed. This research marks the first direct comparison of these species’ biological responses to both temperature and OA conditions within the same experiment. The four species exhibited varying responses to temperature and OA conditions. Mortality rates were not significantly associated with pH or temperature conditions for any of the species studied. Growth (measured as change in maximum shell height) was observed to be higher in warmer tanks for all species and was not significantly impacted by pH. Two groups (juvenileM.arenariaand juvenileM.mercenaria) exhibited lightening in the color of their shells at lower pH levels at all temperatures, attributed to a loss of shell periostracum. The variable responses of the studied bivalve species, despite belonging to the same phylogenetic class and geographic region, highlights the need for further study into implications for health and management of bivalves in the face of variable stressors. 
    more » « less