skip to main content


This content will become publicly available on September 24, 2025

Title: Framework for Martini-based Coarse-grained Model of Enzymes: Model Development and Experimental Validation

Recent experiments have shown that enzyme activity can preserved in harsh environments by complexing enzyme with polymer into a Protein Polymer Hybrid (PPH). In a successful PPH, heteropolymer strands bind to the enzyme surface and restrain the folded protein without adversely affecting the binding and active sites. It is believed that hybridization is driven by noncovalent interactions at the enzyme surface including hydrophobicity and electrostatics. Molecular modeling of these interactions is not practical at the all atom scale due to the long timescales and large particle counts needed to characterize binding. Protein structure at the scale of amino acid residues is parsimoniously represented by a coarse grained model in which one particle represents several atoms, significantly reducing the cost of simulation. In this study we present two coarse grained enzyme models, lipase and dehalogenase, prepared using a top down modeling strategy. We simulate each enzyme in aqueous solution and calculate statistics of protein surface features and shape descriptors. The values from the coarse grained data are compared with the same calculations performed on all atom reference systems, revealing key similarities of surface chemistry at the two scales. Structural measures are calculated from the all-atom reference systems and compared with estimates from small angle X ray scattering (SAXS) experiments, with good agreement between the two. The described procedures of modeling and analysis comprise a framework for the development of coarse-grained models of protein surfaces with validation to experiment.

 
more » « less
Award ID(s):
2118860 1654325
PAR ID:
10544516
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We developed coarse-grained models of spike proteins in SARS-CoV-2 coronavirus and angiotensin-converting enzyme 2 (ACE2) receptor proteins to study the endocytosis of a whole coronavirus under physiologically relevant spatial and temporal scales. We first conducted all-atom explicit-solvent molecular dynamics simulations of the recently characterized structures of spike and ACE2 proteins. We then established coarse-grained models using the shape-based coarse-graining approach based on the protein crystal structures and extracted the force field parameters from the all-atom simulation trajectories. To further analyze the coarse-grained models, we carried out normal mode analysis of the coarse-grained models to refine the force field parameters by matching the fluctuations of the internal coordinates with the original all-atom simulations. Finally, we demonstrated the capability of these coarse-grained models by simulating the endocytosis of a whole coronavirus through the host cell membrane. We embedded the coarse-grained models of spikes on the surface of the virus envelope and anchored ACE2 receptors on the host cell membrane, which is modeled using a one-particle-thick lipid bilayer model. The coarse-grained simulations show the spike proteins adopt bent configurations due to their unique flexibility during their interaction with the ACE2 receptors, which makes it easier for them to attach to the host cell membrane than rigid spikes. 
    more » « less
  2. Elucidating protein rigidity offers insights about protein conformational changes. An understanding of protein motion can help speed drug development, and provide general insights into the dynamic behaviors of biomolecules. Existing rigidity analysis techniques employ fine-grained, all-atom modeling, which has a costly run-time, particularly for proteins made up of more than 500 residues. In this work, we introduce coarse-grained rigidity analysis, and showcase that it provides flexibility information about a protein that is similar in accuracy to an all-atom modeling approach. We assess the accuracy of the coarse-grained method relative to an all-atom approach via a comparison metric that reasons about the largest rigid clusters of the two methods. The apparent symmetry between the all-atom and coarse-grained methods yields very similar results, but the coarse-grained method routinely exhibits 40% reduced run-times. The CGRAP web server outputs rigid cluster information, and provides data visualization capabilities, including a interactive protein visualizer. 
    more » « less
  3. Computational methodologies are increasingly addressing modeling of the whole cell at the molecular level. Proteins and their interactions are the key component of cellular processes. Techniques for modeling protein interactions, thus far, have included protein docking and molecular simulation. The latter approaches account for the dynamics of the interactions but are relatively slow, if carried out at all-atom resolution, or are significantly coarse grained. Protein docking algorithms are far more efficient in sampling spatial coordinates. However, they do not account for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the two modeling approaches, developing an approach that can reach unprecedented simulation timescales at all-atom resolution. The global intermolecular energy landscape of a large system of proteins was mapped by the pairwise fast Fourier transform docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was parametrized on existing data and validated on a number of observations from experiments and molecular dynamics simulations. The simulation protocol performed consistently across very different systems of proteins at different protein concentrations. It recapitulated data on the previously observed protein diffusion rates and aggregation. The speed of calculation allows reaching second-long trajectories of protein systems that approach the size of the cells, at atomic resolution.

     
    more » « less
  4. Abstract

    Heme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein–ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site.

     
    more » « less
  5. Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein–protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research. 
    more » « less