Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing existing street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera's video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale 
                        more » 
                        « less   
                    
                            
                            StreetNav: Leveraging street cameras to support precise outdoor navigation for blind pedestrians
                        
                    
    
            Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS’s inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precisedestinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing existing street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera’s video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2038984
- PAR ID:
- 10544517
- Publisher / Repository:
- arXiv:2310.00491 [cs.HC], Oct. 2023.
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing *existing* street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera's video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale.more » « less
- 
            There are a wide variety of mobile phone emergency response applications exist for both indoor and outdoor environments. However, outdoor applications mostly provide accident and navigation information to users, and indoor applications are limited to the unavailability of GPS positioning and WiFi access problems. This paper describes the proposed mobile augmented reality system (MARS) that allows both outdoor and indoor users to retrieve and manage information for emergency response and navigation that is spatially registered with the real world. The proposed MARS utilizes feature extraction for location sensing in indoor environments as during emergencies GPS and WiFi systems might not work. This paper describes the implementation of this MARS deployed on tablets and smartphones for building evacuation purposes. The MARS delivers critical evacuation information to smartphone users in the indoor environment and navigation information in the outdoor environments. A limited user study was conducted to test the effectiveness of the proposed MARS using the mobile phone usability questionnaire (MPUQ) framework. The results show that AR features were well integrated into the MARS and it will help identify the nearest exit in the building during the emergency evacuation.more » « less
- 
            Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that the magnetometer can be actively spoofed using a combination of carefully controlled coils. To experimentally demonstrate and evaluate the feasibility of the attack in real-world, we implement a first real-time integrated GPS/INS spoofer that accounts for traffic fluidity, congestion, lights, and dynamically generates corresponding spoofing signals. Furthermore, we evaluate our attack on ten different cities using driving traces and publicly available city plans. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the actual destination without being detected. We also show that it is possible for the adversary to reach almost 60--80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures that limit an attacker's ability, without the need for any hardware modifications. Our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof.more » « less
- 
            GPS accuracy is poor in indoor environments and around buildings. Thus, reading and following signs still remains the most common mechanism for providing and receiving wayfinding information in such spaces. This puts individuals who are blind or visually impaired (BVI) at a great disadvantage. This work designs, implements, and evaluates a wayfinding system and smartphone application called CityGuide that can be used by BVI individuals to navigate their surroundings beyond what is possible with just a GPS-based system. CityGuide enables an individual to query and get turn-by-turn shortest route directions from an indoor location to an outdoor location. CityGuide leverages recently developed indoor wayfinding solutions in conjunction with GPS signals to provide a seamless indoor-outdoor navigation and wayfinding system that guides a BVI individual to their desired destination through the shortest route. Evaluations of CityGuide with BVI human subjects navigating between an indoor starting point to an outdoor destination within an unfamiliar university campus scenario showed it to be effective in reducing end-to-end navigation times and distances of almost all participants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    