Abstract The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high‐resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the <c> (axis) and result from slip in <> (direction) on(plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low‐angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either {, {, {, or. Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock‐recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments.
more »
« less
Imaging and Segmenting Grains and Subgrains Using Backscattered Electron Techniques
Abstract We present two new methods of processing data from backscattered electron signals in a scanning electron microscope to image grains and subgrains. The first combines data from multiple backscattered electron images acquired at different specimen geometries to (1) better reveal grain boundaries in recrystallized microstructures and (2) distinguish between recrystallized and unrecrystallized regions in partially recrystallized microstructures. The second utilizes spherical harmonic transform indexing of electron backscatter diffraction patterns to produce high angular resolution orientation data that enable the characterization of subgrains. Subgrains are produced during high-temperature plastic deformation and have boundary misorientation angles ranging from a few degrees down to a few hundredths of a degree. We also present an algorithm to automatically segment grains from combined backscattered electron image data or grains and subgrains from high angular resolution electron backscatter diffraction data. Together, these new techniques enable rapid measurements of individual grains and subgrains from large populations.
more »
« less
- Award ID(s):
- 2003312
- PAR ID:
- 10544568
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 30
- Issue:
- 5
- ISSN:
- 1431-9276
- Format(s):
- Medium: X Size: p. 913-924
- Size(s):
- p. 913-924
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We calibrate a subgrain‐size piezometer using electron backscatter diffraction (EBSD) data collected from experimentally deformed samples of olivine and quartz. Systematic analyses of angular and spatial resolution test the suitability of each data set for inclusion in calibration of the subgrain‐size piezometer. To identify subgrain boundaries, we consider a range of critical misorientation angles and conclude that a 1° threshold provides the optimal piezometric calibration. The mean line‐intercept length, equivalent to the subgrain‐size, is found to be inversely proportional to the von Mises equivalent stress for data sets both with and without the correction of Holyoke and Kronenberg (2010,https://doi.org/10.1016/j.tecto.2010.08.001). These new piezometers provide stress estimates from EBSD analyses of polymineralic rocks without the need to discriminate between relict and recrystallized grains and therefore greatly increase the range of rocks that may be used to constrain geodynamic models.more » « less
-
Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mechanisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.more » « less
-
Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mecha- nisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.more » « less
-
Associated Publications Bennett IV, T.J. and Taleff, E.M. Dynamic Grain Growth Driven by Subgrain Boundaries in an Interstitial-Free Steel During Deformation at 850 °C. Metall Mater Trans A 55, 429–446 (2024). https://doi.org/10.1007/s11661-023-07256-w. Bennett IV, T.J. and Taleff, E.M. Imaging and Segmenting Grains and Subgrains using Backscattered Electron Techniques. Under review (2024). Data Description These data were collected by Thomas J. Bennett IV on July 28, 2022. The electron backscatter diffraction (EBSD) data and associated electron backscatter diffraction patterns (EBSPs) contained herein were acquired from a titanium-added interstitial-free (Ti-IF) steel sheet material containing numerous subgrains. The Ti-IF steel specimen that provided these data was ramped to 850 degrees Celsius over 30 minutes, held at this temperature for one hour, and then deformed at a constant true-strain rate of 10^-4 s^-1. Upon reaching a final true strain of 0.225, the specimen was air quenched while maintaining a constant stress to preserve subgrains formed during high-temperature deformation. The tensile specimen was cut from a Ti-IF steel sheet received in a hard as-rolled condition with the tensile axis parallel to the sheet rolling direction. EBSPs were acquired from a section cut from the center of the deformed gage region using a JEOL JSM-IT300HR SEM equipped with an EDAX Velodity EBSD camera at the Center for Integrated Nanotechnologies. The following conditions were used for EBSD data acquisition: Accelerating Voltage: 20 kV Beam Current: 80% Working Distance: 20.0 mm Magnification: 200× Dynamic Focus: 44 (out of 255, arbitrary units) Specimen Tilt: 70 degrees Scanning Grid Type: Square Step Size (x and y): 0.5 μm Scan Size: 520 (across) × 340 (down) pixels EBSD Camera Resolution: 446 × 446 pixels EBSD Camera Binning: 1 × 1 EBSD Camera Exposure Time: 10 ms Frame Averaging: None Specimen Tensile Direction: Horizontal Specimen Rolling Direction: Horizontal Specimen Long Transverse Direction: Vertical Specimen Short Transverse Direction: Normal to plane Pattern Center (EMSphInx Convention): (x_pc, y_pc, L) = (-0.2 pixels, 112.76 pixels, 21736.4 μm) EBSD Camera Elevation Angle: 3 degrees EBSD Camera Screen Width: 32 mm Pixel size on EBSD Camera Screen: 71.749 μm/pixel ( = 32000 μm / 446 pixels) Note: Conversions between different pattern center conventions may be found in the journal article below or at the following link: https://github.com/EMsoft-org/EMsoft/wiki/DItutorial. Jackson, M.A., Pascal, E., and De Graef, M. Dictionary Indexing of Electron Back-Scatter Diffraction Patterns: a Hands-On Tutorial. Integr Mater Manuf Innov 8, 226–246 (2019). https://doi.org/10.1007/s40192-019-00137-4. File Descriptions Specimen_orientation.pdf - A schematic showing specimen reference directions and the orientation used for EBSD data acquisition. Patterns.zip - A compressed archive containing Patterns.up2. This file contains 16-bit EBSPs and is 70,336,697,616 bytes (70.3 GB) uncompressed. SHT_Indexed.ang - A file containing orientation data produced by indexing Patterns.up2 using EMSphInx. Orientations are represented by Euler angles (Bunge convention) and are to be interpreted using the EDAX Setting 2 convention (see MTEX documentation at https://mtex-toolbox.github.io/EBSDReferenceFrame.html). SHT_Indexed.h5 - A file in HDF5 format containing orientation data and other relevant information produced by indexing Patterns.up2 using EMSphInx. SHT_Indexed_IPFmap.png - An image of an inverse pole figure map colored with respect to the short transverse direction showing the data from SHT_Indexed.ang. Note: The basic format of "up2" files is the following. The first 4 bytes provide the version number. The second 4 bytes are the width of the patterns. The third 4 bytes are the height of the patterns. The fourth 4 bytes are the starting position of the pattern image data. Acknowledgments The authors gratefully acknowledge support from the National Science Foundation under Grant DMR-2003312 and instrumentation under Grant DMR-9974476. The authors also gratefully acknowledge support from the U.S. Department of Energy, Office of High Energy Physics under Grant DE-SC0009960. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract 89233218CNA000001) and Sandia National Laboratories (Contract DE-NA-0003525). The authors thank Mr. Thomas Cayia (Arcelor Mittal) for providing the interstitial-free steel material used for this study.more » « less
An official website of the United States government
