This content will become publicly available on June 28, 2025
MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation
- Award ID(s):
- 2400511
- PAR ID:
- 10544694
- Publisher / Repository:
- IEEE International Workshop on LLM-Aided Design
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Automating hardware design could obviate a signif-icant amount of human error from the engineering process and lead to fewer errors. Verilog is a popular hardware description language to model and design digital systems, thus generating Verilog code is a critical first step. Emerging large language models (LLMs) are able to write high-quality code in other programming languages. In this paper, we characterize the ability of LLMs to generate useful Verilog. For this, we fine-tune pre-trained LLMs on Verilog datasets collected from GitHub and Verilog textbooks. We construct an evaluation framework comprising test-benches for functional analysis and a flow to test the syntax of Verilog code generated in response to problems of varying difficulty. Our findings show that across our problem scenarios, the fine-tuning results in LLMs more capable of producing syntactically correct code (25.9% overall). Further, when analyzing functional correctness, a fine-tuned open-source CodeGen LLM can outperform the state-of-the-art commercial Codex LLM (6.5% overall). We release our training/evaluation scripts and LLM checkpoints as open source contributions.more » « less
-
Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.more » « less
-
Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.more » « less