Land use and land cover (LULC) can significantly alter river water, which can in turn have important impacts on downstream coastal ecosystems by delivering nutrients that promote marine eutrophication and hypoxia. Well-documented in temperate systems, less is known about the way land cover relates to water quality in low-lying coastal zones in the tropics. Here we evaluate the catchment LULC and the physical and chemical characteristics of six rivers that contribute flow into a seasonally hypoxic tropical bay in Bocas del Toro, Panama. From July 2019 to March 2020, we routinely surveyed eight physical and chemical characteristics (temperature, specific conductivity, salinity, pH, dissolved oxygen (DO), nitrate and nitrite, ammonium, and phosphate). Our goals were to determine how these physical and chemical characteristics of the rivers reflect the LULC, to compare the water quality of the focal rivers to rivers across Panama, and to discuss the potential impacts of river discharge in the Bay. Overall, we found that the six focal rivers have significantly different river water characteristics that can be linked to catchment LULC and that water quality of rivers 10 s of kilometers apart could differ drastically. Two focal catchments dominated by pristine peat swamp vegetation in San San Pond Sak, showed characteristics typical of blackwater rivers, with low pH, dissolved oxygen, and nutrients. The remaining four catchments were largely mountainous with >50% forest cover. In these rivers, variation in nutrient concentrations were associated with percent urbanization. Comparisons across Panamanian rivers covered in a national survey to our focal rivers shows that saltwater intrusions and low DO of coastal swamp rivers may result in their classification by a standardized water quality index as having slightly contaminated water quality, despite this being their natural state. Examination of deforestation over the last 20 years, show that changes were <10% in the focal catchments, were larger in the small mountainous catchments and suggest that in the past 20 years the physical and chemical characteristics of river water that contributes to Almirante Bay may have shifted slightly in response to these moderate land use changes. (See supplementary information for Spanish-language abstract). 
                        more » 
                        « less   
                    
                            
                            Looking beyond land-use and land-cover change: Zoonoses emerge in the agricultural matrix
                        
                    - Award ID(s):
- 1924200
- PAR ID:
- 10544782
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- One Earth
- Volume:
- 6
- Issue:
- 9
- ISSN:
- 2590-3322
- Page Range / eLocation ID:
- 1131 to 1142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Land-use and land cover classifications are typically created using automated methods to analyze modern, spatially explicit color aerial imagery. However, creating classifications from black and white historical aerial imagery presents a number of challenges that require a combination of more traditional, manual techniques and approaches. A georectified mosaic of 93 aerial images was digitized in ArcGIS to create a land-use/land cover classification. The analyzed area covered 585 km2 (226 mi2) including all of Baltimore City, and an area immediately adjacent to the city known at the time as the Metropolitan District of Baltimore County. A combination of 8 land-use and land cover classes were used: Agriculture, Barren, Built (Other), Forest, Grass/Shrubland, Industrial, Residential, and Water. This geospatial data set captures a moment of dynamic expansion in the city, just prior to the Great Depression and can be used to examine relationships between property ownership and forest patch dynamics across time. These insights may help inform future environmental planning, conservation, management, and stewardship goals for Baltimore City forest patches, and other cities throughout the region.more » « less
- 
            Land-use and land cover classifications are typically created using automated methods to analyze modern, spatially explicit color aerial imagery. However, creating classifications from black and white historical aerial imagery presents a number of challenges that require a combination of more traditional, manual techniques and approaches. A georectified mosaic of 113 aerial images was digitized in ArcGIS to create a land-use/land cover classification. The analyzed area covered 700 km2 (270 mi2) including all of Baltimore City, and a portion of Baltimore County immediately surrounding the city. A combination of 8 land-use and land cover classes were used: Agriculture, Barren, Built (Other), Forest, Grass/Shrubland, Industrial, Residential, and Water. This geospatial data set captures an ecologically and socially important moment in the post-war history of the city. It can be used to examine relationships between property ownership and forest patch dynamics across time. These insights may help inform future environmental planning, conservation, management, and stewardship goals for Baltimore City forest patches, and other cities throughout the region.more » « less
- 
            Land-use land-cover (LULC) change is one of the most important anthropogenic threats to biodiversity and ecosystems integrity. As a result, the systematic generation of annual regional, national, and global LULC map products derived from the classification of satellite imagery data have become critical inputs for multiple scientific disciplines. The importance of quantifying pixel-level uncertainty to improve the robustness of downstream analyses has long been acknowledged but this practice is still not widely adopted in the generation of these LULC products. The lack of uncertainty quantification is likely due to the fact that most approaches that have been put forward for this task are too computationally intensive for large-scale analysis (e.g., bootstrapping). In this article, we describe how conformal statistics can be used to quantify pixel-level uncertainty in a way that is not computationally intensive, is statistically rigorous despite relying on few assumptions, and can be used together with any classification algorithm that produces class probabilities. Our simulation results show how the size of the predictive sets created by conformal statistics can be used as an indicator of classification uncertainty at the pixel level. Our analysis based on data from the Brazilian Amazon reveals that both forest and water have high certainty whereas pasture and the “natural (other)” category have substantial uncertainty. This information can guide additional ground-truth data collection and the resulting raster combining the LULC classification with the uncertainty results can be used to communicate in a transparent way to downstream users which classified pixels have high or low uncertainty. Given the importance of systematic LULC maps and uncertainty quantification, we believe that this approach will find wide use in the remote sensing community.more » « less
- 
            Abstract Deforestation due to land-use and land-cover (LULC) change has been linked to increased emerging zoonotic disease risk despite limited local level data on such outbreaks. This Forum reevaluates this risk inference using newly released data on zoonotic disease outbreaks, accounting for Structural One Health features, including socioeconomic development and armed conflict covariates. Event and time series data on disease and forest coverage anomalies at the 0.5-degree level for every month between January 2003 and December 2018 are used to estimate the relationship between LULC and zoonosis using Poisson generalized additive and generalized linear models. Once adjusted for Structural One Health features, outbreak risk is 7%–200% higher in areas that experienced forest cover reversion. These results highlight the importance of accounting for Structural One Health factors when analyzing complex socioecological phenomena such as the LULC–infectious disease nexus.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    