skip to main content


Title: Spatial Analysis and Visual Communication of Emergency Information through Augmented Reality
During emergencies like fire and smoke or active shooter events, there is a need to address the vulnerability and assess plans for evacuation. With the recent improvements in technology for smartphones, there is an opportunity for geo-visual environments that offer experiential learning by providing spatial analysis and visual communication of emergency-related information to the user. This paper presents the development and evaluation of the mobile augmented reality application (MARA) designed specifically for acquiring spatial analysis, situational awareness, and visual communication. The MARA incorporates existing permanent features such as room numbers and signages in the building as markers to display the floor plan of the building and show navigational directions to the exit. Through visualization of integrated geographic information systems and real-time data analysis, MARA provides the current location of the person, the number of exits, and user-specific personalized evacuation routes. The paper also describes a limited user study that was conducted to assess the usability and effectiveness of the MARA application using the widely recognized System Usability Scale (SUS) framework. The results show the effectiveness of our situational awareness-based MARA in multilevel buildings for evacuations, educational, and navigational purposes.  more » « less
Award ID(s):
2319752 2321539 2321574
PAR ID:
10544798
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Imaging Science and Technology
Date Published:
Journal Name:
Journal of Imaging Science and Technology
Volume:
67
Issue:
6
ISSN:
1943-3522
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation. 
    more » « less
  2. Emergency response in indoor building evacuation is essential for effective rescue and safety management. First responders often lack the situational awareness capability to quickly assess the layout of a building upon initial entry. For occupants of the building, situational awareness becomes more important in cases of active shooter events or circumstances of fire and smoke. One of the challenges is to provide user-specific personalized evacuation routes in real-time. In multilevel building environments, the complexity of the architecture creates problems for both visual and mental representation of the 3D spaces. This paper presents three cutting edge Augmented Reality Instructional (ARI) modules that overcome the visual limitations associated with the traditional, static 2D methods of communicating evacuation plans for multilevel buildings. Using existing building features, the authors demonstrate how the three modules provide contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. These ARI visualizations are developed for first responders and building occupants to help increase emergency preparedness and mitigate the evacuation related risks in multilevel building rescues and safety management. Specifically, the paper describes the design and implementation of the ARI modules and reports the results of the pilot studies conducted to evaluate their perceived usefulness, ease-of-use, and usability. The results suggest the desirability of further heuristic examination of three-dimensional situational awareness-based ARI application effectiveness in multilevel building evacuations. 
    more » « less
  3. Indoor navigation in complex building environments poses significant challenges, particularly for individuals who are unfamiliar with their surroundings. Mixed reality (MR) technologies have emerged as a promising solution to enhance situational awareness and facilitate navigation within indoor spaces. However, there is a lack of spatial data for indoor environments, including outdated floor plans and limited real-time operational data. This paper presents the development of a mixed-reality application for indoor building navigation and evacuation. The application uses feature extraction for location sensing and situational awareness to provide accurate and reliable navigation in any indoor environment using Microsoft HoloLens. The application can track the user's position and orientation and give the user-specific information on how to evacuate the building. This information is then used to generate navigation instructions for the user. We demonstrate how this mixed reality HoloLens application can provide spatially contextualized 3D visualizations that promote spatial knowledge acquisition and situational awareness. These 3D visualizations are developed as an emergency evacuation and navigation tool to aid the building occupants in safe and quick evacuation. Experimental results demonstrate the effectiveness of the application, providing 3D visualizations of multilevel spaces and aiding individuals in understanding their position and evacuation path during emergencies. We believe that adopting mixed reality technologies, such as the HoloLens, can greatly enhance individuals' ability to navigate large-scale environments during emergencies by promoting spatial knowledge acquisition and supporting cognitive mapping. 
    more » « less
  4. Wildland firefighters must be able to maintain situational awareness to ensure their safety. Crew members, including lookouts and crew building handlines, rely on visibility to assess risk and communicate changing conditions. Geographic information systems and remote sensing offer potential solutions for characterizing visibility using models incorporating terrain and vegetation height. Visibility can be assessed using viewshed algorithms, and while previous research has demonstrated the utility of these algorithms across multiple fields, their use in wildland firefighter safety has yet to be explored. The goals of this study were to develop an approach for assessing visibility at the handline level, quantify the effects of spatial resolution on a lidar-driven visibility analysis, and demonstrate a set of spatial metrics that can be used to inform handline safety. Comparisons were made between elevation models derived from airborne lidar at varying spatial resolutions and those derived from LANDFIRE, a US-wide 30 m product. Coarser resolution inputs overestimated visibility by as much as 223%, while the finest-scale resolution input was not practical due to extreme processing times. Canopy cover and slope had strong linear relationships with visibility, with R2 values of 0.806 and 0.718, respectively. Visibility analyses, when conducted at an appropriate spatial resolution, can provide useful information to inform situational awareness in a wildland fire context. Evaluating situational awareness at the handline level prior to engaging a fire may help firefighters evaluate potential safety risks and more effectively plan handlines. 
    more » « less
  5. Augmented Reality (AR) headsets are being employed in industrial settings (e.g., the oil industry); however, there has been little work on how information should be presented in these headsets, especially in the context of situational awareness. We present a study examining three different presentation styles (Display, Environment, Mixed Environment) for textual secondary information in AR headsets. We found that the Display and Environment presentation styles assisted in perception and comprehension. Our work contributes a first step to understanding how to design visual information in AR headsets to support situational awareness. 
    more » « less