Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The simulation of ice sheet‐climate interactions, such as surface mass balance fluxes, is sensitive to model grid resolution. Here we simulate the multi‐century evolution of the Greenland Ice Sheet (GrIS) and its interaction with the climate using the Community Earth System Model version 2.2 (CESM2.2) including an interactive GrIS component (the Community Ice Sheet Model v2.1 [CISM2.1]) under an idealized warming scenario (atmospheric increases by 1% until quadrupling the pre‐industrial level and then is held fixed). A variable‐resolution (VR) grid with 1/ regional refinement over the broader Arctic and resolution elsewhere is applied to the atmosphere and land components, and the results are compared with conventional lat‐lon grid simulations to investigate the impact of grid refinement. Compared with the runs, the VR run features a slower rate of surface melt, especially over the western and northern GrIS, where the ice surface slopes gently toward the periphery. This difference pattern originates primarily from higher snow albedo and, thus, weaker albedo feedback in the VR run. The VR grid better captures the CISM ice sheet topography by reducing elevation discrepancies between CAM and CISM and is, therefore, less reliant on the downscaling algorithm, which is known to underestimate albedo gradients. The sea level rise contribution from the GrIS in the VR run is 53 mm by year 150 and 831 mm by year 350, approximately 40% and 20% less than that of the runs, respectively.more » « less
-
Abstract This study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat ($$ \sim \mathrm{33,000} $$km2) during the presence of BC AARs as compared to$$ \sim \mathrm{13,000} $$ km2during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions.more » « less
-
Abstract Supraglacial lakes on the Greenland Ice Sheet (GrIS) can impact both the ice sheet surface mass balance and ice dynamics. Thus, understanding the evolution and dynamics of supraglacial lakes is important to provide improved parameterizations for ice sheet models to enable better projections of future GrIS changes. In this study, we utilize the growing inventory of optical and microwave satellite imagery to automatically determine the fate of Greenland‐wide supraglacial lakes during 2018 and 2019; low and high melt seasons respectively. We develop a novel time series classification method to categorize lakes into four classes: (a) Refreezing, (b) rapidly draining, (c) slowly draining, and (d) buried. Our findings reveal significant interannual variability between the two melt seasons, with a notable increase in the proportion of draining lakes, and a particular dominance of slowly draining lakes, in 2019. We also find that as mean lake depth increases, so does the percentage of lakes that drain, indicating that lake depth may influence hydrofracture potential. We further observe rapidly draining lakes at higher elevations than the previously hypothesized upper‐elevation hydrofracture limit (1,600 m), and that non‐draining lakes are generally deeper during the lower melt 2018 season. Our automatic classification approach and the resulting 2‐year ice‐sheet‐wide data set provide new insights into GrIS supraglacial lake dynamics and evolution, offering a valuable resource for future research.more » « less
-
Abstract Predicting the future contribution of the ice sheets to sea level rise over the next decades presents several challenges due to a poor understanding of critical boundary conditions, such as basal sliding. Traditional numerical models often rely on data assimilation methods to infer spatially variable friction coefficients by solving an inverse problem, given an empirical friction law. However, these approaches are not versatile, as they sometimes demand extensive code development efforts when integrating new physics into the model. Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle these challenges, we use the Physics‐Informed Neural Networks (PINNs) to seamlessly integrate observational data and governing equations of ice flow into a unified loss function, facilitating the solution of both forward and inverse problems within the same framework. We illustrate the versatility of this approach by applying the framework to two‐dimensional problems on the Helheim Glacier in southeast Greenland. By systematically concealing one variable (e.g., ice speed, ice thickness, etc.), we demonstrate the ability of PINNs to accurately reconstruct hidden information. Furthermore, we extend this application to address a challenging mixed inversion problem. We show how PINNs are capable of inferring the basal friction coefficient while simultaneously filling gaps in the sparsely observed ice thickness. This unified framework offers a promising avenue to enhance the predictive capabilities of ice sheet models, reducing uncertainties, and advancing our understanding of poorly constrained physical processes.more » « less
-
Abstract Antarctic firn is critical for ice-shelf stability because it stores meltwater that would otherwise pond on the surface. Ponded meltwater increases the risk of hydrofracture and subsequent potential ice-shelf collapse. Here, we use output from a firn model to build a computationally simpler emulator that uses a random forest to predict ice-shelf effective firn air content, which considers impermeable ice layers that make deeper parts of the firn inaccessible to meltwater, based on climate conditions. We find that summer air temperature and precipitation are the most important climatic features for predicting firn air content. Based on the climatology from an ensemble of Earth System Models, we find that the Larsen C Ice Shelf is most at risk of firn air depletion during the 21st century, while the larger Ross and Ronne-Filchner ice shelves are unlikely to experience substantial firn air content change. This work demonstrates the utility of emulation for computationally efficient estimations of complicated ice sheet processes.more » « less
-
Free, publicly-accessible full text available November 3, 2026
-
Abstract. Subglacial topography beneath the Greenland Ice Sheet is a fundamental control on its dynamics and response to changes in the climate system. Yet, it remains challenging to measure directly, and existing representations of the subglacial topography rely on a limited number of observations. Although the use of mass conservation and the development of BedMachine Greenland substantially improved the representation of the bed topography, this approach is limited to fast-flowing sectors and is less effective in regions with complex, alpine topography. As an alternative to traditional numerical methods, recent work has explored using Physics Informed Neural Networks (PINNs), constrained by only one physical law, to solve forward and inverse problems in ice sheet modeling. Building on this work, we assess three PINN frameworks constrained by distinct conservation laws, showing that PINNs informed with a single conservation law are not sufficient for regions with sparse measurements and complex topographies. To that end, we introduce a novel approach that involves coupling two conservation laws within a PINN framework to infer the subglacial topography and test this approach for three regions with distinct environments in Greenland. This PINN is trained with both the conservation of mass and an approximation of the conservation of momentum (the Shelfy-Stream Approximation), which allows us to simultaneously infer the ice thickness and basal shear stress using observations of ice velocities, surface elevation, and the apparent mass balance in a mixed inversion problem. We compare the predicted ice thickness to ground-truth ice-penetrating radar measurements of ice thickness, showing that the PINN informed with two conservation laws is capable of inferring ice thickness in sparsely surveyed regions. Furthermore, comparisons of predicted bed topographies with BedMachine Greenland show that this approach is capable of discovering new bed features in slower-moving regions and in regions of complex topography, highlighting its potential for better constraining the bed topography of the Greenland Ice Sheet.more » « lessFree, publicly-accessible full text available September 22, 2026
-
Free, publicly-accessible full text available August 3, 2026
-
Though polar scientists entertain having huge amounts of publicly available datasets, they face the challenge that working with such data is a cumbersome process that requires downloading tons of unnecessary data and writing various scripts on top of it. This hinders their ability to perform any kind of interactive analysis. This paper presents Polaris; a novel open-source system infrastructure for Polar science that is highly Interactive and Scalable. Polaris is designed based on three observations that distinguish the query workload of polar scientists, namely, all queries are spatio-temporal, not all data are equal, and the large majority of queries are aggregates. Polaris is equipped with a hierarchical spatio-temporal index structure that stores precomputed aggregates for data of interest. Experimental results with a real Polaris prototype and real scientific data show that it achieves highly interactive and scalable data access, enabling interactive analysis of polar science data.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Predicting the future contributions of the ice sheets to sea level rise remains a significant challenge due to our limited understanding of key physical processes (e.g., basal friction, ice rheology) and the lack of observations of critical model inputs (e.g., bed topography). Traditional numerical models typically rely on data assimilation methods to estimate these variables by solving inverse problems based on conservation laws of mass, momentum, and energy. However, these methods are not versatile and require extensive code development to incorporate new physics. Moreover, their dependence on data alignment within computational grids hampers their adaptability, especially in the context of sparse data availability in space and time. To address these limitations, we developed PINNICLE (Physics-Informed Neural Networks for Ice and CLimatE), an open-source Python library dedicated to ice sheet modeling. PINNICLE seamlessly integrates observational data and physical laws, facilitating the solution of both forward and inverse problems within a single framework. PINNICLE currently supports a variety of conservation laws, including the Shelfy-Stream Approximation (SSA), Mono-Layer Higher-Order (MOLHO) models, and mass conservation equations, for both time-independent and time-dependent simulations. The library is user-friendly, requiring only the setting of a few hyperparameters for standard modeling tasks, while advanced users can define custom models within the framework. Additionally, PINNICLE is based on the DeepXDE library, which supports widely-used machine learning packages such as TensorFlow, PyTorch, and JAX, enabling users to select the backend that best fits their hardware. We describe here the implementation of PINNICLE and showcase this library with examples across the Greenland and Antarctic ice sheets for a range of forward and inverse problems.more » « lessFree, publicly-accessible full text available April 2, 2026
An official website of the United States government
