skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Should Opportunists Be Encouraged? Optimal Decisions in Hybrid Cloud Service Systems
This paper investigates a hybrid service system with a cloud server and an in-house server. We consider two different scenarios: a hybrid service system with orbit space and a hybrid service system without orbit space. In the hybrid service system with orbit space, customers who fail to enter the cloud server can choose to join the in-house subsystem or to enter an orbit space and retry the cloud server. An admission control mechanism based on queue-length limitation is adopted to adjust whether the cloud service resources are open to customers. When the cloud server cannot be accessed immediately, some customers send their jobs to the in-house subsystem, while others (called opportunists) try to send their jobs to the cloud server again. We obtain the optimal queue-length limitation for a given retrial rate. The service provider and customers are different stakeholders, and their market forces are also different. Therefore, it is more realistic to explore the game relationship between them by using dynamic game theory. We can also explore the joint optimums of the queue-length limitation and the retrial rate in the framework of the Stackelberg game. Finally, by comparing with the hybrid service system without orbit space, we discuss the significance of the existence of orbit space, and gain management insights. It is found that the existence of opportunists may benefit the service provider, although they significantly harm social interests, regardless of whether they are cooperative or non-cooperative; therefore, opportunists are encouraged in some situations. Numerical analysis shows that adding a retrial orbit to a hybrid cloud service system with certain input parameters may even more than triple the service provider’s revenue.  more » « less
Award ID(s):
2318662
PAR ID:
10544819
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Network and Service Management
Volume:
21
Issue:
3
ISSN:
1932-4537
Page Range / eLocation ID:
3330-2243
Subject(s) / Keyword(s):
Cloud service queueing-game optimal decision hybrid service system Stackelberg game.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelation-principle style argument, we find that it suffices to consider signaling mechanisms where the service provider sends a binary signal of "join" or "leave", and under which the equilibrium strategy of a customer is to follow the service provider's recommended action. (2) Optimality of threshold policies: For a given fixed price for service, we use the structural characterization to show that the optimal signaling mechanism can be obtained as a solution to a linear program with a countable number of variables and constraints. Under some mild technical conditions on the waiting costs, we establish that there exists an optimal signaling mechanism with a threshold structure, where service provider sends the "join" signal if the queue length is below a threshold, and "leave" otherwise. (In addition, at the threshold, the service provider randomizes.) For the special case of linear waiting costs, we derive an analytical expression for the optimal threshold i terms of the two branches of the Lambert-W function. (3) Revenue comparison: Finally, we show that with the optimal choice of the fixed price and using the corresponding optimal signaling mechanism, the service provider can achieve the same revenue as with the optimal state-dependent pricing mechanism in a fully-observable queue. This implies that in settings where state-dependent pricing is not feasible, the service provider can effectively use optimal signaling (with the optimal fixed price) to achieve the same revenue. 
    more » « less
  2. We consider a load-balancing system composed of a fixed number of single-server queues operating under the well-known join-the-shortest queue policy and where jobs/customers are impatient and abandon if they do not receive service after some (random) amount of time. In this setting, we characterize the centered and appropriately scaled steady-state queue-length distribution (hereafter referred to as limiting distribution) in the limit as the abandonment rate goes to zero at the same time as the load either converges to one or is larger than one. Depending on the arrival, service, and abandonment rates, we observe three different regimes of operation that yield three different limiting distributions. The first regime is when the system is underloaded, and its load converges relatively slowly to one. In this case, abandonments do not affect the limiting distribution, and we obtain the same exponential distribution as in the system without abandonments. When the load converges to one faster, we have the second regime, where abandonments become significant. Here, the system undergoes a phase transition, and the limiting distribution is a truncated Gaussian. Further, the third regime is when the system is heavily overloaded, and so, the queue lengths are very large. In this case, we show that the limiting distribution converges to a normal distribution. To establish our results, we first prove a weaker form of state space collapse by providing a uniform bound on the second moment of the (unscaled) perpendicular component of the queue lengths, which shows that the system behaves like a single-server queue. We then use exponential Lyapunov functions to characterize the limiting distribution of the steady-state queue-length vector. Funding: This work was supported by the National Science Foundation [Grants CMMI-2140534 and EPCN-2144316]. 
    more » « less
  3. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less
  4. We study optimal pricing in a single server queue when the customers valuation of service depends on their waiting time. In particular, we consider a very general model, where the customer valuations are random and are sampled from a distribution that depends on the queue length. The goal of the service provider is to set dynamic state dependent prices in order to maximize its revenue, while also managing congestion. We model the problem as a Markov decision process and present structural results on the optimal policy. We also present an algorithm to find an approximate optimal policy. We further present a myopic policy that is easy to evaluate and present bounds on its performance. We finally illustrate the quality of our approximate solution and the myopic solution using numerical simulations. 
    more » « less
  5. null (Ed.)
    Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-server-per-job model: an arrival might not "fit" into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class. In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems. 
    more » « less