This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection–diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.
more »
« less
A nonlocal convection–diffusion model with Gaussian‐type kernels and meshfree discretization
Abstract Nonlocal models have demonstrated their indispensability in numerical simulations across a spectrum of critical domains, ranging from analyzing crack and fracture behavior in structural engineering to modeling anomalous diffusion phenomena in materials science and simulating convection processes in heterogeneous environments. In this study, we present a novel framework for constructing nonlocal convection–diffusion models using Gaussian‐type kernels. Our framework uniquely formulates the diffusion term by correlating the constant diffusion coefficient with the variance of the Gaussian kernel. Simultaneously, the convection term is defined by integrating the variable velocity field into the kernel as the expectation of a multivariate Gaussian distribution, facilitating a comprehensive representation of convective transport phenomena. We rigorously establish the well‐posedness of the proposed nonlocal model and derive a maximum principle to ensure its stability and reliability in numerical simulations. Furthermore, we develop a meshfree discretization scheme tailored for numerically simulating our model, designed to uphold both the discrete maximum principle and asymptotic compatibility. Through extensive numerical experiments, we validate the efficacy and versatility of our framework, demonstrating its superior performance compared to existing approaches.
more »
« less
- Award ID(s):
- 2109633
- PAR ID:
- 10544921
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Numerical Methods for Partial Differential Equations
- Volume:
- 40
- Issue:
- 6
- ISSN:
- 0749-159X
- Page Range / eLocation ID:
- e23141
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extensive experimental evidence highlights that scalar turbulence exhibits anomalous diffusion and stronger intermittency levels at small scales compared to that in fluid turbulence. This renders the corresponding subgrid-scale dynamics modeling for scalar turbulence a greater challenge to date. We develop a new large eddy simulation (LES) paradigm for efficiently and dynamically nonlocal LES modeling of the scalar turbulence. To this end, we formulate the underlying nonlocal model starting from the filtered Boltzmann kinetic transport equation, where the divergence of subgrid-scale scalar fluxes emerges as a fractional-order Laplacian term in the filtered advection–diffusion model, coding the corresponding superdiffusive nature of scalar turbulence. Subsequently, we develop a robust data-driven algorithm for estimation of the fractional (noninteger) Laplacian exponent, where we, on the fly, calculate the corresponding model coefficient employing a new dynamic procedure. Our a priori tests show that our new dynamically nonlocal LES paradigm provides better agreement with the ground-truth filtered direct numerical simulation data in comparison to the conventional static and dynamic Prandtl–Smagorinsky models. Moreover, in order to analyze the numerical stability and assessing the model's performance, we carry out comprehensive a posteriori tests. They unanimously illustrate that our new model considerably outperforms other existing functional models, correctly predicting the backscattering phenomena and, at the same time, providing higher correlations at small-to-large filter sizes. We conclude that our proposed nonlocal subgrid-scale model for scalar turbulence is amenable for coarse LES and very large eddy simulation frameworks even with strong anisotropies, applicable to environmental applications.more » « less
-
In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings.more » « less
-
This lecture serves as an invitation to further studies on nonlocal models, their mathematics, computation, and applications. We sample our recent attempts in the development of a systematic mathematical framework for nonlocal models, including basic elements of nonlocal vector calculus, well-posedness of nonlocal variational problems, coupling to local models, convergence and compatibility of numerical approximations, and applications to nonlocal mechanics and diffusion. We also draw connections with traditional models and other relevant mathematical subjects.more » « less
-
null (Ed.)Partial differential equations (PDEs) are used with huge success to model phenomena across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDEs fail to adequately model observed phenomena, or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis and of specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modelling and algorithmic extensions, which serve to show the wide applicability of nonlocal modelling.more » « less
An official website of the United States government
