skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Nonlocal half-ball vector operators on bounded domains: Poincaré inequality and its applications

This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection–diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.

 
more » « less
Award ID(s):
2111608 2240180
PAR ID:
10517380
Author(s) / Creator(s):
;
Publisher / Repository:
World Scientific Publishing Company
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
33
Issue:
12
ISSN:
0218-2025
Page Range / eLocation ID:
2507 to 2556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \Omega $ that is either a bounded domain in $ \mathbb{R}^{d} $ or $ \mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.

     
    more » « less
  2. Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions. 
    more » « less
  3. Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition. 
    more » « less
  4. Abstract

    Spatiotemporal fractional‐derivative models (FDMs) have been increasingly used to simulate non‐Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one‐dimensional fractional diffusion. Both the zero‐value and nonzero‐value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann‐Liouville fractional derivative (capturing nonzero‐value spatial‐nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional‐diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle‐tracking algorithm for non‐Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero‐value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random‐walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

     
    more » « less
  5. This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition. 
    more » « less