Abstract We prove two compactness results for function spaces with finite Dirichlet energy of half‐space nonlocal gradients. In each of these results, we provide sufficient conditions on a sequence of kernel functions that guarantee the asymptotic compact embedding of the associated nonlocal function spaces into the class of square‐integrable functions. Moreover, we will demonstrate that the sequence of nonlocal function spaces converges in an appropriate sense to a limiting function space. As an application, we prove uniform Poincaré‐type inequalities for sequence of half‐space gradient operators. We also apply the compactness result to demonstrate the convergence of appropriately parameterized nonlocal heterogeneous anisotropic diffusion problems. We will construct asymptotically compatible schemes for these type of problems. Another application concerns the convergence and robust discretization of a nonlocal optimal control problem.
more »
« less
Nonlocal half-ball vector operators on bounded domains: Poincaré inequality and its applications
This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection–diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.
more »
« less
- PAR ID:
- 10517380
- Publisher / Repository:
- World Scientific Publishing Company
- Date Published:
- Journal Name:
- Mathematical Models and Methods in Applied Sciences
- Volume:
- 33
- Issue:
- 12
- ISSN:
- 0218-2025
- Page Range / eLocation ID:
- 2507 to 2556
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $$ L^{p} $$ vector fields defined on a domain $$ \Omega $$ that is either a bounded domain in $$ \mathbb{R}^{d} $$ or $$ \mathbb{R}^{d} $$ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $$ L^{p} $$ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.more » « less
-
Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition.more » « less
-
Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions.more » « less
-
Abstract We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in . We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system.more » « less
An official website of the United States government

