This content will become publicly available on December 9, 2025
- Award ID(s):
- 2145644
- PAR ID:
- 10544962
- Publisher / Repository:
- Neural Information Processing Systems (NeurIPS 2024)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize the acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community.more » « less
-
Abstract Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to more efficient exploration of the design space compared to traditional strategies. This can have a significant impact on modern scientific discovery, in particular autonomous materials discovery, which can be viewed as an optimization problem aimed at looking for the maximum (or minimum) point for the desired materials properties. The performance of BO-based experimental design depends not only on the adopted acquisition function but also on the surrogate models that help to approximate underlying objective functions. In this paper, we propose a fully autonomous experimental design framework that uses more adaptive and flexible Bayesian surrogate models in a BO procedure, namely Bayesian multivariate adaptive regression splines and Bayesian additive regression trees. They can overcome the weaknesses of widely used Gaussian process-based methods when faced with relatively high-dimensional design space or non-smooth patterns of objective functions. Both simulation studies and real-world materials science case studies demonstrate their enhanced search efficiency and robustness.
-
Current methods of finding optimal experimental conditions, Edisonian systematic searches, often inefficiently evaluate suboptimal design points and require fine resolution to identify near optimal conditions. For expensive experimental campaigns or those with large design spaces, the shortcomings of the status quo approaches are more significant. Here, we extend Bayesian optimization (BO) and introduce a chemically-informed data-driven optimization (ChIDDO) approach. This approach uses inexpensive and low-fidelity information obtained from physical models of chemical processes and subsequently combines it with expensive and high-fidelity experimental data to optimize a common objective function. Using common optimization benchmark objective functions, we describe scenarios in which the ChIDDO algorithm outperforms the traditional BO approach, and then implement the algorithm on a simulated electrochemical engineering optimization problem.more » « less
-
null (Ed.)Due to the growing complexity and numerous manufacturing variation in safety-critical analog and mixed-signal (AMS) circuit design, rare failure detection in the high-dimensional variational space is one of the major challenges in AMS verification. Efficient AMS failure detection is very demanding with limited samples on account of high simulation and manufacturing cost. In this work, we combine a reversible network and a gating architecture to identify essential features from datasets and reduce feature dimension for fast failure detection. While reversible residual networks (RevNets) have been actively studied for its restoration ability from output to input without the loss of information, the gating network facilitates the RevNet to aim at effective dimension reduction. We incorporate the proposed reversible gating architecture into Bayesian optimization (BO) framework to reduce the dimensionality of BO embedding important features clarified by gating fusion weights so that the failure points can be efficiently located. Furthermore, we propose a conditional density estimation of important and non-important features to extract high-dimensional original input features from the low-dimension important features, improving the efficiency of the proposed methods. The improvements of our proposed approach on rare failure detection is demonstrated in AMS data under the high-dimensional process variations.more » « less
-
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous optimization. However, its adoption for drug design has been hindered by the discrete, high-dimensional nature of the decision variables. We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based optimization of multi-objective acquisition functions in the latent space of the autoencoder. These acquisition functions allow LaMBO to balance the explore-exploit tradeoff over multiple design rounds, and to balance objective tradeoffs by optimizing sequences at many different points on the Pareto frontier. We evaluate LaMBO on two small-molecule design tasks, and introduce new tasks optimizing \emph{in silico} and \emph{in vitro} properties of large-molecule fluorescent proteins. In our experiments LaMBO outperforms genetic optimizers and does not require a large pretraining corpus, demonstrating that BayesOpt is practical and effective for biological sequence design.more » « less