Bayesian optimization (BO) is a powerful paradigm for optimizing expensive black-box functions. Traditional BO methods typically rely on separate hand-crafted acquisition functions and surrogate models for the underlying function, and often operate in a myopic manner. In this paper, we propose a novel direct regret optimization approach that jointly learns the optimal model and non-myopic acquisition by distilling from a set of candidate models and acquisitions, and explicitly targets minimizing the multi-step regret. Our framework leverages an ensemble of Gaussian Processes (GPs) with varying hyperparameters to generate simulated BO trajectories, each guided by an acquisition function chosen from a pool of conventional choices, until a Bayesian early stop criterion is met. These simulated trajectories, capturing multi-step exploration strategies, are used to train an end-to-end decision transformer that directly learns to select next query points aimed at improving the ultimate objective. We further adopt a dense training–sparse learning paradigm: The decision transformer is trained offline with abundant simulated data sampled from ensemble GPs and acquisitions, while a limited number of real evaluations refine the GPs online. Experimental results on synthetic and real-world benchmarks suggest that our method consistently outperforms BO baselines, achieving lower simple regret and demonstrating more robust exploration in high-dimensional or noisy settings.
more »
« less
Approximation-Aware Bayesian Optimization
High-dimensional Bayesian optimization (BO) tasks such as molecular design often require > 10,000 function evaluations before obtaining meaningful results. While methods like sparse variational Gaussian processes (SVGPs) reduce computational requirements in these settings, the underlying approximations result in suboptimal data acquisitions that slow the progress of optimization. In this paper we modify SVGPs to better align with the goals of BO: targeting informed data acquisition rather than global posterior fidelity. Using the framework of utility-calibrated variational inference, we unify GP approximation and data acquisition into a joint optimization problem, thereby ensuring optimal decisions under a limited computational budget. Our approach can be used with any decision-theoretic acquisition function and is compatible with trust region methods like TuRBO. We derive efficient joint objectives for the expected improvement and knowledge gradient acquisition functions in both the standard and batch BO settings. Our approach outperforms standard SVGPs on high-dimensional benchmark tasks in control and molecular design.
more »
« less
- Award ID(s):
- 2145644
- PAR ID:
- 10544962
- Publisher / Repository:
- Neural Information Processing Systems (NeurIPS 2024)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The discovery of molecules with optimal functional properties is a central challenge across diverse fields such as energy storage, catalysis, and chemical sensing. However, molecular property optimization (MPO) remains difficult due to the combinatorial size of chemical space and the cost of acquiring property labels via simulations or wet-lab experiments. Bayesian optimization (BO) offers a principled framework for sample-efficient discovery in such settings, but its effectiveness depends critically on the quality of the molecular representation used to train the underlying probabilistic surrogate model. Existing approaches based on fingerprints, graphs, SMILES strings, or learned embeddings often struggle in low-data regimes due to high dimensionality or poorly structured latent spaces. Here, we introduce Molecular Descriptors with Actively Identified Subspaces (MolDAIS), a flexible molecular BO framework that adaptively identifies task-relevant subspaces within large descriptor libraries. Leveraging the sparse axis-aligned subspace (SAAS) prior introduced in recent BO literature, MolDAIS constructs parsimonious Gaussian process surrogate models that focus on task-relevant features as new data is acquired. In addition to validating this approach for descriptor-based MPO, we introduce two novel screening variants, which significantly reduce computational cost while preserving predictive accuracy and physical interpretability. We demonstrate that MolDAIS consistently outperforms state-of-the-art MPO methods across a suite of benchmark and real-world tasks, including single- and multi-objective optimization. Our results show that MolDAIS can identify near-optimal candidates from chemical libraries with over 100,000 molecules using fewer than 100 property evaluations, highlighting its promise as a practical tool for data-scarce molecular discovery.more » « less
-
A long-standing belief holds that Bayesian Optimization (BO) with standard Gaussian processes (GP) — referred to as standard BO — underperforms in high- dimensional optimization problems. While this belief seems plausible, it lacks both robust empirical evidence and theoretical justification. To address this gap, we present a systematic investigation. First, through a comprehensive evaluation across twelve benchmarks, we found that while the popular Square Exponential (SE) kernel often leads to poor performance, using Matérn kernels enables standard BO to consistently achieve top-tier results, frequently surpassing methods specifically designed for high-dimensional optimization. Second, our theoretical analysis reveals that the SE kernel’s failure primarily stems from improper initialization of the length-scale parameters, which are commonly used in practice but can cause gradient vanishing in training. We provide a probabilistic bound to characterize this issue, showing that Matérn kernels are less susceptible and can robustly handle much higher dimensions. Third, we propose a simple robust initialization strategy that dramatically improves the performance of the SE kernel, bringing it close to state-of-the-art methods, without requiring additional priors or regularization. We prove another probabilistic bound that demonstrates how the gradient vanishing issue can be effectively mitigated with our method. Our findings advocate for a re-evaluation of standard BO’s potential in high-dimensional settings. The code is released at https://github.com/ XZT008/Standard-GP-is-all-you-need-for-HDBOmore » « less
-
Designing molecules that must satisfy multiple, often conflicting, objectives is a central challenge in molecular discovery. The enormous size of the chemical space and the cost of high-fidelity simulations have driven the development of machine learning-guided strategies for accelerating design with limited data. Among these, Bayesian optimization (BO) offers a principled framework for sample-efficient search, while generative models provide a mechanism to propose novel, diverse candidates beyond fixed libraries. However, existing methods that couple the two often rely on continuous latent spaces, which introduce both architectural entanglement and scalability challenges. This work introduces an alternative, modular “generate-then-optimize” framework for de novo multiobjective molecular design/discovery. At each iteration, a generative model is used to construct a large, diverse pool of candidate molecules, after which a novel acquisition function, qPMHI (multipoint Probability of Maximum Hypervolume Improvement), is used to optimally select a batch of candidates most likely to induce the largest Pareto front expansion. The key insight is that qPMHI decomposes additively, enabling exact, scalable batch selection via only a simple ranking of probabilities that can be easily estimated with Monte Carlo sampling. We benchmark the framework against state-of-the-art latent-space and discrete molecular optimization methods, demonstrating significant improvements across synthetic benchmarks and application-driven tasks. Specifically, in a case study related to sustainable energy storage, we show that our approach quickly uncovers novel, diverse, and high-performing organic (quinone-based) cathode materials for aqueous redox flow battery applications.more » « less
-
Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize the acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community.more » « less
An official website of the United States government

