This content will become publicly available on July 27, 2025
- Award ID(s):
- 2118209
- PAR ID:
- 10544976
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics
- Date Published:
- ISBN:
- 978-1-62410-716-0
- Format(s):
- Medium: X
- Location:
- Las Vegas, Nevada
- Sponsoring Org:
- National Science Foundation
More Like this
-
In tidal streams and rivers, the flow of water can be at yaw to the turbine rotor plane causing performance degradation and a skewed downstream wake. The current study aims to quantify the performance variation and associated wake behavior caused by a tidal turbine operating in a yawed inflow environment. A three-dimensional computational fluid dynamics study was carried out using multiple reference frame approach using κ-ω SST turbulence model with curvature correction. The computations were validated by comparison with experimental results on a 1:20 scale prototype for a 0° yaw case performed in a laboratory flume. The simulations were performed using a three-bladed, constant chord, untwisted tidal turbine operating at uniform inflow. Yaw effects were observed for angles ranging from 5° to 15°. An increase in yaw over this range caused a power coefficient deficit of 26% and a thrust coefficient deficit of about 8% at a tip speed ratio of 5 that corresponds to the maximum power coefficient for the tested turbine. In addition, wake propagation was studied up to a downstream distance of ten rotor radius, and skewness in the wake, proportional to yaw angle was observed. At higher yaw angles, the flow around the turbine rotor was found to cushion the tip vortices, accelerating the interaction between the tip vortices and the skewed wake, thereby facilitating a faster wake recovery. The center of the wake was tracked using a center of mass technique. The center of wake analysis was used to better quantify the deviation of the wake with increasing yaw angle. It was observed that with an increase in yaw angle, the recovery distance moved closer to the rotor plane. The wake was noticed to meander around the turbine centerline with increasing downstream distance and slightly deviate towards the free surface above the turbine centerline, magnitude of which varied depending on yaw.more » « less
-
Biological membranes are host to proteins and molecules which may form domain-like structures resulting in spatially varying material properties. Vesicles with such heterogeneous membranes can exhibit intricate shapes at equilibrium and rich dynamics when placed into a flow. Under the assumption of small deformations and a two-dimensional system, we develop a reduced-order model to describe the fluid-structure interaction between a viscous background shear flow and an inextensible membrane with spatially varying bending stiffness and spontaneous curvature. Material property variations of a critical magnitude, relative to the flow rate and internal/external viscosity contrast, can set off a qualitative change in the vesicle dynamics. A membrane of nearly constant bending stiffness or spontaneous curvature undergoes a small amplitude swinging motion (which includes tangential tank-treading), while for large enough material variations the dynamics pass through a regime featuring tumbling and periodic phase-lagging of the membrane material, and ultimately for very large material variation to a rigid-body tumbling behaviour. Distinct differences are found for even and odd spatial modes of domain distribution. Full numerical simulations are used to probe the theoretical predictions, which appear valid even when studying substantially deformed membranes.more » « less
-
This work considers the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long-wavelength fluctuations in a broad class of one-dimensional substitution tilings. A simple argument is presented which predicts the exponent α governing the scaling of Fourier intensities at small wavenumbers, tilings with α > 0 being hyperuniform, and numerical computations confirm that the predictions are accurate for quasiperiodic tilings, tilings with singular continuous spectra and limit-periodic tilings. Quasiperiodic or singular continuous cases can be constructed with α arbitrarily close to any given value between −1 and 3. Limit-periodic tilings can be constructed with α between −1 and 1 or with Fourier intensities that approach zero faster than any power law.more » « less
-
This experimental study investigates the fluid–structure–surface interactions of a flexibly mounted rigid plate in axial flow, focusing on flow-induced vibration (FIV) response and vortex dynamics of the system within a reduced velocity range of
, corresponding to a Reynolds number range of$U^*=0.29\unicode{x2013}8.73$ . The plate, with one and two degrees of freedom (DoFs) for pitching and plunging oscillations, is examined at various submerged heights near the free surface. Results show that the plate exhibits divergence instability at low reduced velocities in both 1DoF and 2DoF systems. As the flow velocity surpasses a critical reduced velocity, periodic limit-cycle oscillations (LCOs) occur, increasing in amplitude until a second critical reduced velocity is reached. Beyond this point, LCOs are suppressed, and the plate experiences an increased static divergence angle with further flow velocity increase. The proximity to the free surface significantly influences the FIV response, with decreasing submerged heights leading to reduced LCO amplitudes and a shift of instabilities to higher reduced velocities. Vortex dynamics are analysed using time-resolved volumetric particle tracking velocimetry and hydrogen bubble flow visualisation. The analysis reveals disruptions in the symmetric flow field near the free surface, causing elongation and fragmentation of vortices in the wake of the plate, as well as vortex coupling. Proper orthogonal decomposition (POD) identifies dominant coherent structures, including leading-edge and trailing-edge vortices, captured in the first and second paired modes. On the other hand, higher POD modes capture the interaction of vortices in the wake and near the free surface.$Re=518\unicode{x2013}15\,331$ -
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimming
Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.