PurposeThe ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the as-built surface topography as a function of process parameters is crucial to establishing linkages between process parameters and surface topography and is currently not well understood. The purpose of this study is to measure the effect of different LPBF process parameters on the as-built surface topography of Inconel 718 parts. Design/methodology/approachInconel 718 truncheon specimens with different process parameters, including single- and double contour laser pass, laser power, laser scan speed, build orientation and characterize their as-built surface topography using deterministic and areal surface topography parameters are printed. The effect of both individual process parameters, as well as their interactions, on the as-built surface topography are evaluated and linked to the underlying physics, informed by surface topography data. FindingsDeterministic surface topography parameters are more suitable than areal surface topography parameters to characterize the distinct features of the as-built surfaces that result from LPBF. The as-built surface topography is strongly dependent on the built orientation and is dominated by the staircase effect for shallow orientations and partially fused metal powder particles for steep orientations. Laser power and laser scan speed have a combined effect on the as-built surface topography, even when maintaining constant laser energy density. Originality/valueThis work addresses two knowledge gaps. (i) It introduces deterministic instead of areal surface topography parameters to unambiguously characterize the as-built LPBF surfaces. (ii) It provides a methodical study of the as-built surface topography as a function of individual LPBF process parameters and their interaction effects.
more »
« less
Melt Pool characteristics on surface roughness and printability of 316L stainless steel in laser powder bed fusion
PurposeSurface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel. Design/methodology/approachA systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy. FindingsThe study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation. Originality/valueThis study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions.
more »
« less
- Award ID(s):
- 2029425
- PAR ID:
- 10545047
- Publisher / Repository:
- Emerald
- Date Published:
- Journal Name:
- Rapid Prototyping Journal
- ISSN:
- 1355-2546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PurposeA main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented. Design/methodology/approachInfrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature. FindingsThe experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle. Originality/valueThis work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.more » « less
-
Abstract Challenge 3 of the 2022 NIST additive manufacturing benchmark (AM Bench) experiments asked modelers to submit predictions for solid cooling rate, liquid cooling rate, time above melt, and melt pool geometry for single and multiple track laser powder bed fusion process using moving lasers. An in-house developedAdditiveManufacturingComputationalFluidDynamics code (AM-CFD) combined with a cylindrical heat source is implemented to accurately predict these experiments. Heuristic heat source calibration is proposed relating volumetric energy density (ψ) based on experiments available in the literature. The parameters of the heat source of the computational model are initially calibrated based on a Higher Order Proper Generalized Decomposition- (HOPGD) based surrogate model. The prediction using the calibrated heat source agrees quantitatively with NIST measurements for different process conditions (laser spot diameter, laser power, and scan speed). A scaling law based on keyhole formation is also utilized in calibrating the parameters of the cylindrical heat source and predicting the challenge experiments. In addition, an improvement on the heat source model is proposed to relate the Volumetric Energy Density (VEDσ) to the melt pool aspect ratio. The model shows further improvement in the prediction of the experimental measurements for the melt pool, including cases at higher VEDσ. Overall, it is concluded that the appropriate selection of laser heat source parameterization scheme along with the heat source model is crucial in the accurate prediction of melt pool geometry and thermal measurements while bypassing the expensive computational simulations that consider increased physics equations.more » « less
-
PurposeThe purpose of this study was to examine the experiences of multiple campus teams as they engaged in the assessment of their science, technology, engineering and mathematics (STEM) mentoring ecosystems within a peer assessment dialogue exercise. Design/methodology/approachThis project utilized a qualitative multicase study method involving six campus teams, drawing upon completed inventory and visual mapping artefacts, session observations and debriefing interviews. The campuses included research universities, small colleges and minority-serving institutions (MSIs) across the United States of America. The authors analysed which features of the peer assessment dialogue exercise scaffolded participants' learning about ecosystem synergies and threats. FindingsThe results illustrated the benefit of instructor modelling, intra-team process time and multiple rounds of peer assessment. Participants gained new insights into their own campuses and an increased sense of possibility by dialoguing with peer campuses. Research limitations/implicationsThis project involved teams from a small set of institutions, relying on observational and self-reported debriefing data. Future research could centre perspectives of institutional leaders. Practical implicationsThe authors recommend dedicating time to the institutional assessment of mentoring ecosystems. Investing in a campus-wide mentoring infrastructure could align with campus equity goals. Originality/valueIn contrast to studies that have focussed solely on programmatic outcomes of mentoring, this study explored strategies to strengthen institutional mentoring ecosystems in higher education, with a focus on peer assessment, dialogue and learning exercises.more » « less
-
PurposeThis study aims to evaluate a method of building a biomedical knowledge graph (KG). Design/methodology/approachThis research first constructs a COVID-19 KG on the COVID-19 Open Research Data Set, covering information over six categories (i.e. disease, drug, gene, species, therapy and symptom). The construction used open-source tools to extract entities, relations and triples. Then, the COVID-19 KG is evaluated on three data-quality dimensions: correctness, relatedness and comprehensiveness, using a semiautomatic approach. Finally, this study assesses the application of the KG by building a question answering (Q&A) system. Five queries regarding COVID-19 genomes, symptoms, transmissions and therapeutics were submitted to the system and the results were analyzed. FindingsWith current extraction tools, the quality of the KG is moderate and difficult to improve, unless more efforts are made to improve the tools for entity extraction, relation extraction and others. This study finds that comprehensiveness and relatedness positively correlate with the data size. Furthermore, the results indicate the performances of the Q&A systems built on the larger-scale KGs are better than the smaller ones for most queries, proving the importance of relatedness and comprehensiveness to ensure the usefulness of the KG. Originality/valueThe KG construction process, data-quality-based and application-based evaluations discussed in this paper provide valuable references for KG researchers and practitioners to build high-quality domain-specific knowledge discovery systems.more » « less
An official website of the United States government

