skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing the as-built surface topography of Inconel 718 specimens as a function of laser powder bed fusion process parameters
PurposeThe ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the as-built surface topography as a function of process parameters is crucial to establishing linkages between process parameters and surface topography and is currently not well understood. The purpose of this study is to measure the effect of different LPBF process parameters on the as-built surface topography of Inconel 718 parts. Design/methodology/approachInconel 718 truncheon specimens with different process parameters, including single- and double contour laser pass, laser power, laser scan speed, build orientation and characterize their as-built surface topography using deterministic and areal surface topography parameters are printed. The effect of both individual process parameters, as well as their interactions, on the as-built surface topography are evaluated and linked to the underlying physics, informed by surface topography data. FindingsDeterministic surface topography parameters are more suitable than areal surface topography parameters to characterize the distinct features of the as-built surfaces that result from LPBF. The as-built surface topography is strongly dependent on the built orientation and is dominated by the staircase effect for shallow orientations and partially fused metal powder particles for steep orientations. Laser power and laser scan speed have a combined effect on the as-built surface topography, even when maintaining constant laser energy density. Originality/valueThis work addresses two knowledge gaps. (i) It introduces deterministic instead of areal surface topography parameters to unambiguously characterize the as-built LPBF surfaces. (ii) It provides a methodical study of the as-built surface topography as a function of individual LPBF process parameters and their interaction effects.  more » « less
Award ID(s):
2328112
PAR ID:
10639838
Author(s) / Creator(s):
;
Publisher / Repository:
Emerald
Date Published:
Journal Name:
Rapid Prototyping Journal
Volume:
31
Issue:
1
ISSN:
1355-2546
Page Range / eLocation ID:
200 to 217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerically generating synthetic surface topography that closely resembles the features and characteristics of experimental surface topography measurements reduces the need to perform these intricate and costly measurements. However, existing algorithms to numerically generated surface topography are not well-suited to create the specific characteristics and geometric features of as-built surfaces that result from laser powder bed fusion (LPBF), such as partially melted metal particles, porosity, laser scan lines, and balling. Thus, we present a method to generate synthetic as-built LPBF surface topography maps using a progressively growing generative adversarial network. We qualitatively and quantitatively demonstrate good agreement between synthetic and experimental as-built LPBF surface topography maps using areal and deterministic surface topography parameters, radially averaged power spectral density, and material ratio curves. The ability to accurately generate synthetic as-built LPBF surface topography maps reduces the experimental burden of performing a large number of surface topography measurements. Furthermore, it facilitates combining experimental measurements with synthetic surface topography maps to create large data-sets that facilitate, e.g. relating as-built surface topography to LPBF process parameters, or implementing digital surface twins to monitor complex end-use LPBF parts, amongst other applications. 
    more » « less
  2. Laser powder bed fusion (PBF‐LB) is an additive manufacturing (AM) technology for producing complex geometry parts. However, the high cost of post‐processing coarse as‐built surfaces drives the need to control surface roughness during fabrication. Prior studies have evaluated the relationship between process parameters and as‐built surface roughness, but they rely on forward models using trial‐and‐error, regression, and data‐driven methods based only on areal surface roughness parameters that neglect spatial surface characteristics. In contrast, this study introduces, for the first time, an inverse data‐centric framework that leverages machine learning algorithms and an experimental dataset of Inconel 718 as‐built surfaces to predict the PBF‐LB process parameters required to achieve a desired as‐built roughness. This inverse model shows a prediction accuracy of ≈80%, compared to 90% for the corresponding forward model. Additionally, it incorporates deterministic surface roughness parameters, which capture both height and spatial information, and significantly improves prediction accuracy compared to only using areal parameters. The inverse model provides a digital tool to process engineers that enables control of surface roughness by tailoring process parameters. Hence, it establishes a foundation for integrating surface roughness control into the digital thread of AM, thereby reducing the need for post‐processing and improving process efficiency. 
    more » « less
  3. We developed and applied a model-based feedforward control approach to reduce temperature-induced flaw formation in the laser powder bed fusion (LPBF) additive manufacturing process. The feedforward control is built upon three basic steps. First, the thermal history of the part is rapidly predicted using a mesh-free graph theory model. Second, thermal history metrics are extracted from the model to identify regions of heat buildup, symptomatic of flaw formation. Third, process parameters are changed layer-by-layer based on insights from the thermal model. This technique was validated with two identical build plates (Inconel 718). Parts on the first build plate were made under manufacturer recommended nominal process parameters. Parts on the second build plate were made with model optimized process parameters. Results were validated with in-situ infrared thermography, and materials characterization techniques. Parts produced under controlled processing exhibited superior geometric accuracy and resolution, finer grain size, and increased microhardness. 
    more » « less
  4. PurposeSurface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel. Design/methodology/approachA systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy. FindingsThe study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation. Originality/valueThis study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions. 
    more » « less
  5. PurposePowder bed density is a key parameter in powder bed additive manufacturing (AM) processes but is not easily monitored. This research evaluates the possibility of non-invasively estimating the density of an AM powder bed via its thermal properties measured using flash thermography (FT). Design/methodology/approachThe thermal diffusivity and conductivity of the samples were found by fitting an analytical model to the measured surface temperature after flash of the powder on a polymer substrate, enabling the estimation of the powder bed density. FindingsFT estimated powder bed was within 8% of weight-based density measurements and the inferred thermal properties are consistent with literature findings. However, multiple flashes were necessary to ensure precise measurements due to noise in the experimental data and the similarity of thermal properties between the powder and substrate. Originality/valueThis paper emphasizes the capability of Flash Thermography (FT) for non-contact measurement of SS 316 L powder bed density, offering a pathway to in-situ monitoring for powder bed AM methods including binder jetting (BJ) and powder bed fusion. Despite the limitations of the current approach, the density knowledge and thermal properties measurements have the potential to enhance process development and thermal modeling powder bed AM processes, aiding in understanding the powder packing and thermal behavior. 
    more » « less