It is widely recognized that nitrogen (N) inputs from watersheds to estuaries are modified during transport through river networks, but changes within tidal freshwater zones (TFZs) have been largely overlooked. This paper sheds new light on the role that TFZs play in modifying the timing and forms of N inputs to estuaries by (1) characterizing spatial and temporal variability of N concentrations and forms in the TFZs of the Mission and Aransas rivers, Texas, USA, and (2) examining seasonal fluxes of N into and out of the Aransas River TFZ. Median concentrations of dissolved inorganic N (DIN) were lower in the TFZs than in upstream non-tidal river reaches and exhibited spatial gradients linked to locations of major N inputs. These spatial patterns were stronger during winter than summer. The forms of N also changed substantially, with DIN changing to organic N (primarily phytoplankton) within the TFZs. Discharge and N flux comparisons for the Aransas River TFZ demonstrated that secular tidal patterns modulate the timing of N export during baseflow conditions: N export far exceeded input during winter, whereas export and input were relatively balanced during summer. While more data are needed to build an annual N budget, our results show that TFZ can change the timing and form of N export immediately upstream of estuaries.
more »
« less
Tidal Freshwater Zones as Hotspots for Biogeochemical Cycling: Sediment Organic Matter Decomposition in the Lower Reaches of Two South Texas Rivers
While organic and inorganic nutrient inputs from land are recognized as a major driver of primary production in estuaries, remarkably little is known about how processes within the tidal freshwater zones (TFZs) of riversmodify these inputs. This study quantifies organic matter (OM) decomposition rates in surface sediment layers in the lower reaches of two south Texas river channels and identifies key parameters that influence sediment decomposition rates. Sediment cores were collected from nontidal and tidal freshwater sites in theMission and Aransas rivers during two summers (June 2015 and June 2016) and two winters (February 2016, January 2017). We measured oxygen consumption rates, organic carbon and nitrogen content, stable isotope ratios (δ13C and δ15N of OM), and sediment porosity. O2 consumption rates in TFZ sediments were 385 ± 88 μmol O2 m−2 h−1 (summer) and 349 ± 87 μmol O2 m−2 h−1 (winter) in the Aransas River and 767 ± 153 μmol O2 m−2 h−1 (summer) and 691 ± 95 μmol O2 m−2 h−1 (winter) in the Mission River. These rates in TFZs were similar to rates in estuaries and higher than rates at non-tidal riverine sites. Rates of sediment O2 consumption were primarily controlled by OM content and temperature. Sediment OM was dominated by algal biomass from in situ production in both TFZs. We hypothesize that algal production and sinking within TFZs is a major pathway for translocation of watershed-derived nutrients from the water column to the sediments within TFZs. Further work is needed to quantify linkages between decomposition, nutrient remineralization, and potential removal through processes such as denitrification.
more »
« less
- Award ID(s):
- 1417433
- PAR ID:
- 10545090
- Publisher / Repository:
- Estuaries and Coasts, Springer
- Date Published:
- Journal Name:
- Estuaries and Coasts
- Volume:
- 44
- Issue:
- 3
- ISSN:
- 1559-2723
- Page Range / eLocation ID:
- 722 to 733
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tidal freshwater zones (TFZs) are transitional environments between terrestrial and coastal waters. TFZs have freshwater chemistry and tidal physics, and yet are neither river nor estuary based on classic definitions. Such zones have been occasionally discussed in the literature but lack a consistent nomenclature and framework for study. This work proposes a measurable definition for TFZs based on three longitudinal points of interest: (1) the upstream limit of brackish water, (2) the upstream limit of bidirectional tidal velocities, and (3) the upstream limit of tidal stage fluctuations. The resulting size and position of a TFZ is transient and depends on the balance of tidal and riverine forces that evolves over event, tidal, seasonal, and annual (or longer) timescales. The concept, definition, and transient analysis of TFZ position are illustrated using field observations from the Aransas River (Texas, USA) from July 2015 to July 2016. The median Aransas TFZ length was 59.9 km, with a late summer maximum of 66.0 km and a winter minimum of 53.6 km. The TFZ typically (annual median) began 11.8 km upstream from the river mouth (15.4 km winter/11.2 km summer medians) and ended 71.7 km upstream (69.0 km/77.2 km). Seasonally low baseflow in the Aransas River promoted gradual coastal salt encroachment upstream, which shortened the TFZ. However, sporadic large rainfall/runoff events rapidly elongated the TFZ. The TFZ definition establishes a quantifiable framework for analyzing these critical freshwater systems that reside at the nexus of natural and human‐influenced hydrology, tides, and climate.more » « less
-
Abstract We experimentally increased salinities in a tidal freshwater marsh on the Altamaha River (Georgia, USA) by exposing the organic rich soils to 3.5 yr of continuous (press) and episodic (pulse) treatments with dilute seawater to simulate the effects of climate change such as sea level rise (press) and drought (pulse). We quantified changes in root production and decomposition, soil elevation, and soil C stocks in replicated (n = 6) 2.5 × 2.5 m field plots. Elevated salinity had no effect on root decomposition, but it caused a significant reduction in root production and belowground biomass that is needed to build and maintain soil elevation capital. The lack of carbon inputs from root production resulted in reduced belowground biomass of 1631 ± 308 vs. 2964 ± 204 g/m2in control plots and an overall 2.8 ± 0.9 cm decline in soil surface elevation in the press plots in the first 3.5 yr, whereas the control (no brackish water additions) and the fresh (river water only) treatments gained 1.2 ± 0.4 and 1.7 ± 0.3 cm, respectively, in a 3.5‐yr period. There was no change in elevation of pulse plots after 3.5 yr. Based on measurements of bulk density and soil C, the decline of 2.8 cm of surface elevation resulted in a loss of 0.77 ± 0.5 kg C/m2in press plots. In contrast, the control and the fresh treatment plots gained 0.25 ± 0.04 and 0.36 ± 0.03 kg C/m2, respectively, which represents a net change in C storage of more than 1 kg C/m2. We conclude that, when continuously exposed to saltwater intrusion, the tidal freshwater marsh’s net primary productivity, especially root production, and not decomposition, are the main drivers of soil organic matter (SOM) accumulation. Reduced productivity leads to loss of soil elevation and soil C, which has important implications for tidal freshwater marsh persistence in the face of rising sea level.more » « less
-
null (Ed.)Aerial sprays of the organophosphate pesticide, naled, were intensified over beach areas during the summer of 2016 to control the locally-acquired Zika outbreak in the continental U.S. Concerns were raised in beach frequented areas about contaminated sediments. The aim of this study was to evaluate the persistence and levels of naled and its byproduct, dichlorvos, in sediments obtained from the affected areas. Laboratory experiments were designed to simulate the effect of various natural conditions on the decomposition of naled in three sediment types (beach sand, marl, and calcinated beach sand). The three sediment samples were also exposed to field aerial sprays. After 30 min of exposure, more dichlorvos was detected in the sediments than naled, with 33 to 43% of the molar concentration initially applied as either naled or dichlorvos. Under dark conditions, trace levels of naled were observed after 24 h on sediments. Higher temperature accelerated the natural decomposition of both naled and dichlorvos in sediments. The half-life of naled ranged from 3 to 5 h at 22.5 °C and ranged from 1 to 3 h at 30 °C. Expedited decomposition of naled was observed under sunlight conditions with a half-life of naled of 20 min. In the field, only dichlorvos was detected in the sediment samples at concentrations between 0.0011 and 0.0028 μmol/g 1 h after aerial sprays. This data can be used towards a risk assessment that evaluates exposures to naled and dichlorvos through beach sands impacted by aerial spray activities.more » « less
-
ABSTRACT Organic carbon (OC) radiocarbon ( 14 C) signatures in marine surface sediments are highly variable and the causes of this heterogeneity remain ambiguous. Here, we present results from a detailed 14 C-based investigation of an Arabian Sea sediment, including measurements on organic matter (OM) in bulk sediment, specific grain size fractions, and OC decomposition products from ramped-pyrolysis-oxidation (RPO). Our results show that 14 C ages of OM increase with increasing grain size, suggesting that grain size is an important factor controlling the 14 C heterogeneity in marine sediments. Analysis of RPO decomposition products from different grain size fractions reveals an overall increase in age of corresponding thermal fractions from finer to coarser fractions. We suggest that hydrodynamic properties of sediment grains exert the important control on the 14 C age distribution of OM among grain size fractions. We propose a conceptual model to account for this dimensionality in 14 C variability that invokes two predominant modes of OM preservation within different grain size fractions of Arabian Sea sediment: finer (<63 µm) fractions are influenced by OM-mineral grain aggregation processes, giving rise to relatively uniform 14 C ages, whereas OM preserved in coarser (>63 µm) fractions includes materials encapsulated within microfossils and/or entrained fossil ( 14 C-depleted) OC hosted in detrital mineral grains. Our findings highlight the value of RPO for assessment of 14 C age variability in sedimentary OC, and for assessing mechanisms of OM preservation in aquatic sediments.more » « less