skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing 1,4-Diethyl-1,2,3,4-tetrahydroquinoxalin-substituted Fluorogens Based on GFP Chromophore for Endoplasmic Reticulum and Lysosome Staining
In the present study, we demonstrated that the introduction of a 1,4-diethyl-1,2,3,4-tetrahydroquinoxalin moiety into the arylidene part of GFP chromophore-derived compounds results in the formation of environment-sensitive fluorogens. The rationally designed and synthesized compounds exhibit remarkable solvent- and pH-dependence in fluorescence intensity. The solvent-dependent variation in fluorescence quantum yield makes it possible to use some of the proposed compounds as polarity sensors suitable for selective endoplasmic reticulum fluorescent labeling in living cells. Moreover, the pH-dependent emission intensity variation of other fluorogens makes them selective fluorescent labels for the lysosomes in living cells.  more » « less
Award ID(s):
2003550
PAR ID:
10545133
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
25
Issue:
19
ISSN:
1422-0067
Page Range / eLocation ID:
10448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemiluminescence imaging offers a low background and high sensitivity approach to imaging analytes in living cells and animals. Intensity-based measurements have been developed, but require careful consideration of kinetics, probe localization, and fluctuations in quantum yield, all of which complicate quantification. Here, we report a ratiometric strategy for quantitative chemiluminescence imaging of pH. The strategy relies on an energy transfer cascade of chemiluminescence emission from a spiroadamantane 1,2-dioxetane to a ratiometric pH indicator via fluorescent dyes in Enhancer solutions. Monitoring the pH-dependent changes in chemiluminescence emission at multiple wavelengths enables ratiometric imaging and quantification of pH independent from variations due to kinetics and probe concentration. 
    more » « less
  2. null (Ed.)
    The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli . This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the p K a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli , expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water. 
    more » « less
  3. An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations ( k 1 = 0.64 ± 0.019 s −1 and 4.1 s −1 , respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging. 
    more » « less
  4. Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study. 
    more » « less
  5. Novel near-infrared ratiometric molecules (probes A and B) produced by linking formyl-functionalized xanthene and methoxybenzene moieties, respectively, onto a xanthene-hemicyanine framework are detailed. Probe A exhibited a primary absorption peak at 780 nm and a shoulder peak at 730 nm and exhibited fluorescence at 740 nm↓ (signifies a downward shift in intensity upon acidification) in a pH 9.3 buffer and 780 nm↑ at pH 2.8 under excitation at 700 nm. Probe B featured absorptions at 618 and 668 nm at pH 3.2 and at 717 nm at pH 8.6, and fluorescence at 693 nm↑ at pH 3.2 and at 739 nm↓ at pH 8.6, in mostly the red to near-IR region. The ratiometric changes in the intensity of the fluorescent absorptions were reversed between A and B upon acidification as indicated by the arrows. Theoretical calculations confirmed that there were slight changes in conformation between probes and the protonated molecules, suggesting that the changes in emission spectra were due mostly to conjugation effects. Calculations at the APFD/6-311+g(d,p) level with a solvent described by the polarizable continuum model resulted in pKa values for A at 6.33 and B at 6.41, in good agreement with the experimentally determined value of 6.97 and an average of 6.40, respectively. The versatilities of the probes were demonstrated in various experimental contexts, including the effective detection of mitochondrial pH fluctuations. Live cell experiments involving exposure to different pH buffers in the presence of H+ ionophores, monitoring mitophagy processes during cell starvation, studying hypoxia induced by CoCl2 treatment, and investigating responses to various oxidative stresses are detailed. Our findings highlight the potential of attaching xanthene and methoxybenzaldehyde groups onto xanthene-hemicyanine structures as versatile tools for monitoring pH changes in a variety of cellular environments and processes. 
    more » « less