skip to main content


This content will become publicly available on January 1, 2025

Title: Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions

In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote base station (BS), and there are no direct connections between the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist the BS in completing the communication. The UAV can either request uncached content from the BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first introduce the decoding error rate within the FBL regime and explore caching policies for the UAV. Subsequently, we formulate an optimization problem aimed at minimizing the average maximum end-to-end decoding error rate across all GUEs while considering the coding length and maximum UAV transmission power constraints. We propose a two-step alternating optimization scheme embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and our numerical results show that the combined learning-optimization algorithm efficiently addresses the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all lead to improved performance.

 
more » « less
Award ID(s):
2221875
PAR ID:
10545148
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Drones
Volume:
8
Issue:
1
ISSN:
2504-446X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate the reliability in an unmanned aerial vehicle (UAV) assisted caching-based downlink network where non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes are adopted. In this network, the ground user equipments (GUEs) request contents from a distant base station (BS) but there are no direct links from the BS to the GUEs. A UAV with limited cache size is employed to assist the BS to complete the communication by either first requesting the uncached contents from the BS and then serving the GUEs or directly sending the cached contents to the GUEs. In this setting, we first introduce the decoding error rate in the FBL regime as well as the caching policy at the UAV, and subsequently we construct an optimization problem aiming to minimize the maximum end-to-end decoding error rate among all GUEs under both coding length and maximum UAV transmission power constraints. A two-step alternating algorithm is proposed to solve the problem and numerical results demonstrate that our algorithm can solve the optimization problem efficiently. More specifically, loosening the FBL constraint, enlarging the cache size and having a higher transmission power budget at the UAV lead to an improved performance. 
    more » « less
  2. This paper considers the problem of optimizing the trajectory of an Unmanned Aerial Vehicle (UAV) Base Station (BS). A map is considered, characterized by a traffic intensity of users to be served. The UAV BS must travel from a given initial location at an initial time to a final position within a given duration and serves the traffic on its way. The problem consists in finding the optimal trajectory that minimizes a certain cost depending on the velocity and on the amount of served traffic. The problem is formulated using the framework of Lagrangian mechanics. When the traffic intensity is quadratic (single-phase), we derive closed-form formulas for the optimal trajectory. When the traffic intensity is bi-phase, necessary conditions of optimality are provided and an Alternating Optimization Algorithm is proposed, that returns a trajectory satisfying these conditions. The Algorithm is initialized with a Model Predictive Control (MPC) online algorithm. Numerical results show how the trajectory is improved with respect to the MPC solution. 
    more » « less
  3. We study downlink transmission in a multi-band heterogeneous network comprising unmanned aerial vehicle (UAV) small base stations and ground-based dual mode mmWave small cells within the coverage area of a microwave (μW) macro base station. We formulate a two-layer optimization framework to simultaneously find efficient coverage radius for the UAVs and energy efficient radio resource management for the network, subject to minimum quality-of-service (QoS) and maximum transmission power constraints. The outer layer derives an optimal coverage radius/height for each UAV as a function of the maximum allowed path loss. The inner layer formulates an optimization problem to maximize the system energy efficiency (EE), defined as the ratio between the aggregate user data rate delivered by the system and its aggregate energy consumption (downlink transmission and circuit power). We demonstrate that at certain values of the target SINR τ introducing the UAV base stations doubles the EE. We also show that an increase in τ beyond an optimal EE point decreases the EE. 
    more » « less
  4. In this paper, we study an unmanned-aerial-vehicle (UAV) based full-duplex (FD) multi-user communication network, where a UAV is deployed as a multiple-input–multiple-output (MIMO) FD base station (BS) to serve multiple FD users on the ground. We propose a multi-objective optimization framework which considers two desirable objective functions, namely sum uplink (UL) rate maximization and sum downlink (DL) rate maximization while providing quality-of-service to all the users in the communication network. A novel resource allocation multi-objective-optimization-problem (MOOP) is designed which optimizes the downlink beamformer, the beamwidth angle, and the 3D position of the UAV, and also the UL power of the FD users. The formulated MOOP is a non-convex problem which is generally intractable. To handle the MOOP, a weighted Tchebycheff method is proposed, which converts the problem to the single-objective-optimization-problem (SOOP). Further, an alternative optimization approach is used, where SOOP is converted in to multiple sub-problems and optimization variables are operated alternatively. The numerical results show a trade-off region between sum UL and sum DL rate, and also validate that the considered FD system provides substantial improvement over traditional HD systems. 
    more » « less
  5. Abstract—Due to the concentrated popularity distribution of video files, caching of popular files on devices, and distributing them via device-to-device (D2D) communications allows a dramatic increase in the throughput of wireless video networks. However, since the popularity distribution is not static and the caching policy might be outdated, there is a need for replacement of cache content. In this work, by exploiting the broadcasting of the base station (BS), we model the caching content replacement in BS assisted wireless D2D caching networks and propose a practically realizable replacement procedure. Subsequently, by introducing a queuing system, the replacement problem is formulated as a sequential decision making problem, in which the long term average service rate is optimized under average cost constraint and queue stability. We propose a replacement design using Lyapunov optimization, which effectively solves the problem and makes decisions. Using simulations, we evaluate the proposed design. The results clearly indicate that, when dynamics exist, the systems exploiting replacement can significantly outperform the systems using merely the static policy. 
    more » « less