skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy Efficiency Analysis of UAV-Assisted mmWave HetNets
We study downlink transmission in a multi-band heterogeneous network comprising unmanned aerial vehicle (UAV) small base stations and ground-based dual mode mmWave small cells within the coverage area of a microwave (μW) macro base station. We formulate a two-layer optimization framework to simultaneously find efficient coverage radius for the UAVs and energy efficient radio resource management for the network, subject to minimum quality-of-service (QoS) and maximum transmission power constraints. The outer layer derives an optimal coverage radius/height for each UAV as a function of the maximum allowed path loss. The inner layer formulates an optimization problem to maximize the system energy efficiency (EE), defined as the ratio between the aggregate user data rate delivered by the system and its aggregate energy consumption (downlink transmission and circuit power). We demonstrate that at certain values of the target SINR τ introducing the UAV base stations doubles the EE. We also show that an increase in τ beyond an optimal EE point decreases the EE.  more » « less
Award ID(s):
1711335 2032033 2032387 1711592
PAR ID:
10060976
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Communications (ICC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we delve into the domain of heterogeneous drone-enabled aerial base stations, each equipped with varying transmit powers, serving as downlink wireless providers for ground users. A central challenge lies in strategically selecting and deploying a subset from the available drone base stations (DBSs) to meet the downlink data rate requirements while minimizing the overall power consumption. To tackle this, we formulate an optimization problem to identify the optimal subset of DBSs, ensuring wireless coverage with an acceptable transmission rate in the downlink path. Moreover, we determine their 3D positions for power consumption optimization. Assuming DBSs operate within the same frequency band, we introduce an innovative, computationally efficient beamforming method to mitigate intercell interference in the downlink. We propose a Kalai–Smorodinsky bargaining solution to establish the optimal beamforming strategy, compensating for interference-related impairments. Our simulation results underscore the efficacy of our solution and offer valuable insights into the performance intricacies of heterogeneous drone-based small-cell networks. 
    more » « less
  2. In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote base station (BS), and there are no direct connections between the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist the BS in completing the communication. The UAV can either request uncached content from the BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first introduce the decoding error rate within the FBL regime and explore caching policies for the UAV. Subsequently, we formulate an optimization problem aimed at minimizing the average maximum end-to-end decoding error rate across all GUEs while considering the coding length and maximum UAV transmission power constraints. We propose a two-step alternating optimization scheme embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and our numerical results show that the combined learning-optimization algorithm efficiently addresses the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all lead to improved performance. 
    more » « less
  3. In this paper, we investigate the reliability in an unmanned aerial vehicle (UAV) assisted caching-based downlink network where non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes are adopted. In this network, the ground user equipments (GUEs) request contents from a distant base station (BS) but there are no direct links from the BS to the GUEs. A UAV with limited cache size is employed to assist the BS to complete the communication by either first requesting the uncached contents from the BS and then serving the GUEs or directly sending the cached contents to the GUEs. In this setting, we first introduce the decoding error rate in the FBL regime as well as the caching policy at the UAV, and subsequently we construct an optimization problem aiming to minimize the maximum end-to-end decoding error rate among all GUEs under both coding length and maximum UAV transmission power constraints. A two-step alternating algorithm is proposed to solve the problem and numerical results demonstrate that our algorithm can solve the optimization problem efficiently. More specifically, loosening the FBL constraint, enlarging the cache size and having a higher transmission power budget at the UAV lead to an improved performance. 
    more » « less
  4. We investigate the energy efficiency (EE) problem in a downlink multi-user millimeter wave (mmWave) rate-splitting multiple access (RSMA) system and propose an energy-efficient one-layer RSMA hybrid precoder design for K users with quality of service constraints. This scheme is applicable to the design of sustainable sixth generation (6G) cellular networks. To make the problem tractable, the analog and the digital precoder designs are decoupled. First, the analog precoder is designed to maximize the desired signal power of each user while ignoring multi-user interference. Second, the digital precoder is designed to manage multi-user interference according to the EE optimization design criterion. We adopt a successive convex approximation-based algorithm for joint optimization of the digital precoders, power, and common rate allocation. Simulation results show that the proposed RSMA scheme always performs at least as well as a baseline spatial division multiple access (SDMA) hybrid precoding scheme and outperforms it under certain channel conditions. These results suggest that RSMA is suitable as a flexible physical layer design for future 6G mmWave networks. 
    more » « less
  5. The rapidly increasing interest from various verticals for the upcoming 5th generation (5G) networks expect the network to support higher data rates and have an improved quality of service. This demand has been met so far by employing sophisticated transmission techniques including massive Multiple Input Multiple Output (MIMO), millimeter wave (mmWave) bands as well as bringing the computational power closer to the users via advanced baseband processing units at the base stations. Future evolution of the networks has also been assumed to open many new business horizons for the operators and the need of not only a resource efficient but also an energy efficient ecosystem has greatly been felt. The deployment of small cells has been envisioned as a promising answer for handling the massive heterogeneous traffic, but the adverse economic and environmental impacts cannot be neglected. Given that 10% of the world’s energy consumption is due to the Information and Communications Technology (ICT) industry, energy-efficiency has thus become one of the key performance indicators (KPI). Various avenues of optimization, game theory and machine learning have been investigated for enhancing power allocation for downlink and uplink channels, as well as other energy consumption/saving approaches. This paper surveys the recent works that address energy efficiency of the radio access as well as the core of wireless networks, and outlines related challenges and open issues. 
    more » « less