skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On a fair and risk‐averse urban air mobility resource allocation problem under demand and capacity uncertainties
Abstract Urban air mobility (UAM) is an emerging air transportation mode to alleviate the ground traffic burden and achieve zero direct aviation emissions. Due to the potential economic scaling effects, the UAM traffic flow is expected to increase dramatically once implemented, and its market can be substantially large. To be prepared for the era of UAM, we study the fair and risk‐averse urban air mobility resource allocation model (FairUAM) under passenger demand and airspace capacity uncertainties for fair, safe, and efficient aircraft operations. FairUAM is a two‐stage model, where the first stage is the aircraft resource allocation, and the second stage is to fairly and efficiently assign the ground and airspace delays to each aircraft provided the realization of random airspace capacities and passenger demand. We show that FairUAM is NP‐hard even when there is no delay assignment decision or no aircraft allocation decision. Thus, we recast FairUAM as a mixed‐integer linear program (MILP) and explore model properties and strengthen the model formulation by developing multiple families of valid inequalities. The stronger formulation allows us to develop a customized exact decomposition algorithm with both benders and L‐shaped cuts, which significantly outperforms the off‐the‐shelf solvers. Finally, we numerically demonstrate the effectiveness of the proposed method and draw managerial insights when applying FairUAM to a real‐world network.  more » « less
Award ID(s):
2246414 2246417
PAR ID:
10545223
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Naval Research Logistics (NRL)
ISSN:
0894-069X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-inthe-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP). This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is ≈6000× faster than the MILP approach and can resolve 100% of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots. 
    more » « less
  2. Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery. 
    more » « less
  3. Advanced air mobility (AAM) has introduced a new mode of air transportation that can be integrated, providing services including air taxis, which can quickly transport people and cargo from one place to another. However, urban airspace is already congested with commercial air traffic, so there is a need for an efficient and autonomous airspace management system. Establishing structured air corridors and enabling UAS-to-UAS (U2U) communications are essential to achieve autonomy. Air corridors are designated airspace primarily reserved for AAM traffic, which will streamline the movement of unmanned aircraft systems (UAS). Meanwhile, U2U communications facilitate efficient collision avoidance strategies (CAS). A key aspect of this system is the development of CAS, which requires advanced communication protocols to monitor traffic patterns and detect potential collisions. This paper explores designing and implementing CAS using U2U communications. Use cases for U2U communications include merging, minimum separation, information relay, collaborative sensing, and rerouting. All these use cases demand real-time solutions for managing traffic conflicts involving multiple UAS. The CAS discussed in this paper utilizes U2U communications to mitigate the risk of collisions in the airspace and demonstrates how U2U communications can assist in efficient AAM traffic management through simulations. 
    more » « less
  4. As city populations continue to rise, urban air mobility (UAM) seeks to provide much needed relief from traffic congestion. UAM is enforced by electrical vertical takeoff and landing (eVTOL) vehicles, which operate out of a vertiport, akin to the relationship between planes and airports. The vertiport has an air traffic controller (ATC) tasked with managing each eVTOL, ensuring they reach their destinations on time and safely. This task allocation problem can be difficult due to inadvertent issues such as mechanical failure, inclement weather, collisions, among other uncertainties that may arise. This paper provides a novel solution to this Urban Air Mobility - Vertiport Schedule Management (UAM-VSM) problem through the utilization of graph convolutional networks (GCNs). GCNs allow us to add abstractions of the vertiport space and eVTOL space as graphs, and aggregate information for a centralized ATC agent to help generalize the environment. We use Unreal Engine combined with Airsim for high fidelity simulation. The proposed GRL agent will be trained in an environment without extra uncertainties and then tested with and without those uncertainties. The performance will be examined side by side with a random and first come first serve (FCFS) baseline. 
    more » « less
  5. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology. 
    more » « less