skip to main content


Title: Graph Learning based Decision Support for Multi-Aircraft Take-Off and Landing at Urban Air Mobility Vertiports
As city populations continue to rise, urban air mobility (UAM) seeks to provide much needed relief from traffic congestion. UAM is enforced by electrical vertical takeoff and landing (eVTOL) vehicles, which operate out of a vertiport, akin to the relationship between planes and airports. The vertiport has an air traffic controller (ATC) tasked with managing each eVTOL, ensuring they reach their destinations on time and safely. This task allocation problem can be difficult due to inadvertent issues such as mechanical failure, inclement weather, collisions, among other uncertainties that may arise. This paper provides a novel solution to this Urban Air Mobility - Vertiport Schedule Management (UAM-VSM) problem through the utilization of graph convolutional networks (GCNs). GCNs allow us to add abstractions of the vertiport space and eVTOL space as graphs, and aggregate information for a centralized ATC agent to help generalize the environment. We use Unreal Engine combined with Airsim for high fidelity simulation. The proposed GRL agent will be trained in an environment without extra uncertainties and then tested with and without those uncertainties. The performance will be examined side by side with a random and first come first serve (FCFS) baseline.  more » « less
Award ID(s):
2048020
NSF-PAR ID:
10428441
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AIAA SCITECH 2023 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urban air mobility (UAM) is an emerging air transportation mode to alleviate the ground traffic burden and achieve zero direct aviation emissions. Due to the potential economic scaling effects, the UAM traffic flow is expected to increase dramatically once implemented, and its market can be substantially large. To be prepared for the era of UAM, we study the fair and risk‐averse urban air mobility resource allocation model (FairUAM) under passenger demand and airspace capacity uncertainties for fair, safe, and efficient aircraft operations. FairUAM is a two‐stage model, where the first stage is the aircraft resource allocation, and the second stage is to fairly and efficiently assign the ground and airspace delays to each aircraft provided the realization of random airspace capacities and passenger demand. We show that FairUAM is NP‐hard even when there is no delay assignment decision or no aircraft allocation decision. Thus, we recast FairUAM as a mixed‐integer linear program (MILP) and explore model properties and strengthen the model formulation by developing multiple families of valid inequalities. The stronger formulation allows us to develop a customized exact decomposition algorithm with both benders and L‐shaped cuts, which significantly outperforms the off‐the‐shelf solvers. Finally, we numerically demonstrate the effectiveness of the proposed method and draw managerial insights when applying FairUAM to a real‐world network.

     
    more » « less
  2. In Urban Air Mobility (UAM) networks, takeoff and landing sites, called vertiports, are likely to experience intermittent closures due to, e.g., adverse weather. To ensure safety, all in-flight Urban Air Vehicles (UAVs) in a UAM network must therefore have alternative landing sites with sufficient landing capacity in the event of a vertiport closure. In this paper, we study the problem of safety verification of UAM schedules in the face of vertiport closures. We first provide necessary and sufficient conditions for a given UAM schedule to be safe in the sense that, if a vertiport closure occurs, then all UAVs will be able to safely land at a backup landing site. We then extend these results to the scenario of multiple vertiport closures. Next, we convert these conditions to an efficient algorithm for verifying the safety of a UAM schedule via a linear program by using properties of totally unimodular matrices. Our algorithm allows for uncertain travel time between UAM vertiports and scales quadratically with the number of scheduled UAVs. We demonstrate our algorithm on a UAM network with up to 1,000 UAVs. 
    more » « less
  3. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology.

     
    more » « less
  4. null (Ed.)
    With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-inthe-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP). This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is ≈6000× faster than the MILP approach and can resolve 100% of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots. 
    more » « less
  5. Urban Air Mobility (UAM) applications, such as air taxis, will rely heavily on perception for situational awareness and safe operation. With recent advances in AI/ML, state-of-the-art perception systems can provide the high-fidelity information necessary for UAM systems. However, due to size, weight, power, and cost (SWaP-C) constraints, the available computing resources of the on-board computing platform in such UAM systems are limited. Therefore, real-time processing of sophisticated perception algorithms, along with guidance, navigation, and control (GNC) functions in a UAM system, is challenging and requires the careful allocation of computing resources. Furthermore, the optimal allocation of computing resources may change over time depending on the speed of the vehicle, environmental complexities, and other factors. For instance, a fast-moving air vehicle at low altitude would need a low-latency perception system, as a long delay in perception can negatively affect safety. Conversely, a slowly landing air vehicle in a complex urban environment would prefer a highly accurate perception system, even if it takes a little longer. However, most perception and control systems are not designed to support such dynamic reconfigurations necessary to maximize performance and safety. We advocate for developing “anytime” perception and control capabilities that can dynamically reconfigure the capabilities of perception and GNC algorithms at runtime to enable safe and intelligent UAM applications. The anytime approach will efficiently allocate the limited computing resources in ways that maximize mission success and ensure safety. The anytime capability is also valuable in the context of distributed sensing, enabling the efficient sharing of perception information across multiple sensor modalities between the nodes. 
    more » « less