skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guided-wave Sagnac atom interferometer with large area and multiple orbits
We describe a matter-wave Sagnac interferometer using Bose condensed atoms confined in a time-orbiting potential trap. Compared to our previous implementation [Moan et al., Phys. Rev. Lett. 124, 120403 (2020)], our new apparatus provides better thermal stability, improved optical access, and reduced trap anharmonicity. The trapping field can be adjusted to compensate for small tilts of the apparatus in gravity. These features enable operation with an effective Sagnac area of 4 mm2 per orbit, and we observe interference with 25% visibility after two orbits at a total interrogation time of 0.6 s. Long-term measurements indicate a phase stability of 0.2 rad or better.  more » « less
Award ID(s):
2110471
PAR ID:
10545229
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
AVS Quantum Science
Volume:
6
Issue:
1
ISSN:
2639-0213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An intrinsically phase-stable Sagnac interferometer is introduced for enhanced sensitivity detection in partially collinear two-dimensional spectroscopy in the short-wave IR. The sensitivity and phase accuracy of the apparatus are demonstrated on the dye IR-26. 
    more » « less
  2. null (Ed.)
    We adapt Sagnac interferometry for magneto-optic Kerr effect measurements of spin-orbit-torque-induced magnetic tilting in thin-film magnetic samples. The high sensitivity of Sagnac interferometry permits for the first time optical quantification of spin-orbit torque from small-angle magnetic tilting of samples with perpendicular magnetic anisotropy (PMA). We find significant disagreement between Sagnac measurements and simultaneously-performed harmonic Hall (HH) measurements of spin-orbit torque on Pt/Co/MgO and Pd/Co/MgO samples with PMA. The Sagnac results for PMA samples are consistent with both HH and Sagnac measurements for the in-plane geometry, so we conclude that the conventional analysis framework for PMA HH measurements is flawed. We suggest that the explanation for this discrepancy is that although magnetic-field induced magnetic tilting in PMA samples can produce a strong planar Hall effect, when tilting is instead generated by spin-orbit torque it produces negligible change in the planar Hall signal. This very surprising result demonstrates an error in the most-popular method for measuring spin-orbit torques in PMA samples, and represents an unsolved puzzle in understanding the planar Hall effect in magnetic thin films. 
    more » « less
  3. A coupling between Earth's rotation and orbital angular momentum (OAM), known as the Sagnac effect, is observed in entangled neutrons produced using a spin-echo interferometer. After correction for instrument systematics the measured coupling is within 5% of theory, with an uncertainty of 7.2%. The OAM in our setup is transverse to the propagation direction and scales linearly with neutron wavelength (4–12.75 Å), so the Sagnac coupling can be varied without mechanically rotating the device, which avoids systematic errors present in previous experiments. The detected transverse OAM of our beam corresponds to 4098 ± 295 Å 1 , 10 5 times lower than in the previous neutron experiments. This demonstrates the feasibility of using the Sagnac effect to definitively measure neutron OAM and paves the way towards a future observation of the quantum Sagnac effect. Published by the American Physical Society2025 
    more » « less
  4. We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8urad/s/rt.Hz for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications. 
    more » « less
  5. Abstract The detection of low-frequency gravitational waves on Earth requires the reduction of displacement noise, which dominates the low-frequency band. One method to cancel test mass displacement noise is a neutron displacement-noise-free interferometer (DFI). This paper proposes a new neutron DFI configuration, a Sagnac-type neutron DFI, which uses a Sagnac interferometer in place of the Mach–Zehnder interferometer. We demonstrate that a sensitivity of the Sagnac-type neutron DFI is higher than that of a conventional neutron DFI with the same interferometer scale. This configuration is particularly significant for neutron DFIs with limited space for construction and limited flux from available neutron sources. 
    more » « less