skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sagnac interferometry for high-sensitivity optical measurements of spin-orbit torque
We adapt Sagnac interferometry for magneto-optic Kerr effect measurements of spin-orbit-torque-induced magnetic tilting in thin-film magnetic samples. The high sensitivity of Sagnac interferometry permits for the first time optical quantification of spin-orbit torque from small-angle magnetic tilting of samples with perpendicular magnetic anisotropy (PMA). We find significant disagreement between Sagnac measurements and simultaneously-performed harmonic Hall (HH) measurements of spin-orbit torque on Pt/Co/MgO and Pd/Co/MgO samples with PMA. The Sagnac results for PMA samples are consistent with both HH and Sagnac measurements for the in-plane geometry, so we conclude that the conventional analysis framework for PMA HH measurements is flawed. We suggest that the explanation for this discrepancy is that although magnetic-field induced magnetic tilting in PMA samples can produce a strong planar Hall effect, when tilting is instead generated by spin-orbit torque it produces negligible change in the planar Hall signal. This very surprising result demonstrates an error in the most-popular method for measuring spin-orbit torques in PMA samples, and represents an unsolved puzzle in understanding the planar Hall effect in magnetic thin films.  more » « less
Award ID(s):
1708499
PAR ID:
10301382
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
2109.13759
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts. 
    more » « less
  2. Abstract Voltage‐Gated Spin‐Orbit‐Torque (VGSOT) Magnetic Random‐Access Memory (MRAM) is a promising candidate for reducing writing energy and improving writing speed in emerging memory and in‐memory computing applications. However, conventional Voltage Controlled Magnetic Anisotropy (VCMA) approaches are often inefficient due to the low VCMA coefficient at the CoFeB/MgO interface. Additionally, traditional heavy metal/perpendicular magnetic anisotropy (PMA) ferromagnet bilayers require an external magnetic field to overcome symmetry constraints and achieve deterministic SOT switching. Here, a novel and industry‐compatible SOT underlayer for next‐generation VGSOT MRAM by employing a composite heavy metal tri‐layer with a high work function is presented. This approach achieves a VCMA coefficient exceeding 100 fJ V−1m−1through electron depletion effects, which is ten times larger than that observed with a pure W underlayer. Furthermore, it is demonstrated that this composite heavy metal SOT underlayer facilitates the integration of VCMA with opposite spin Hall angles, enabling field‐free SOT switching in industry‐compatible PMA CoFeB/MgO systems. 
    more » « less
  3. Mn 3 Sn, a metallic antiferromagnet with an anti-chiral 120° spin structure, generates intriguing magneto-transport signatures such as a large anomalous Hall effect, spin-polarized current with novel symmetries, anomalous Nernst effect, and magneto-optic Kerr effect. When grown epitaxially as MgO(110)[001]∥Mn3Sn(01¯1¯0)[0001], Mn3Sn experiences a uniaxial tensile strain, which changes the bulk sixfold anisotropy to a twofold perpendicular magnetic anisotropy (PMA). Here, we investigate the field-assisted spin–orbit-torque (SOT)-driven dynamics in single-domain Mn3Sn with PMA. We find that for non-zero external magnetic fields, the magnetic octupole moment of Mn3Sn can be switched between the two stable states if the input current is between two field-dependent critical currents. Below the lower critical current, the magnetic octupole moment exhibits a stationary state in the vicinity of the initial stable state. On the other hand, above the higher critical current, the magnetic octupole moment shows oscillatory dynamics which could, in principle, be tuned from the 100s of megahertz to the terahertz range. We obtain approximate analytic expressions of the two critical currents that agree very well with the numerical simulations for experimentally relevant magnetic fields. We also obtain a unified functional form of the switching time vs the input current for different magnetic fields. Finally, we show that for lower values of Gilbert damping (α≲2×10−3), the critical currents and the final steady states depend significantly on α. The numerical and analytic results presented in our work can be used by both theorists and experimentalists to understand the SOT-driven order dynamics in PMA Mn3Sn and design future experiments and devices. 
    more » « less
  4. Increasing dampinglike spin-orbit torque (SOT) is both of fundamental importance for enabling new research into spintronics phenomena and also technologically urgent for advancing low-power spin-torque memory, logic, and oscillator devices. Here, we demonstrate that enhancing interfacial scattering by inserting ultra-thin layers within a spin Hall metals with intrinsic or side-jump mechanisms can significantly enhance the spin Hall ratio. The dampinglike SOT was enhanced by a factor of 2 via sub-monolayer Hf insertion, as evidenced by both harmonic response measurements and current- induced switching of in-plane magnetized magnetic memory devices with the record low critical switching current of ~73 μA (switching current density ≈ 3.6×106 A/cm2). This work demonstrates a very effective strategy for maximizing dampinglike SOT for low-power spin-torque devices. 
    more » « less
  5. Unidirectional spin Hall magnetoresistance (USMR) is a magnetoresistance effect with potential applications to read two-terminal spin–orbit-torque (SOT) devices directly. In this work, we observed a large USMR value (up to 0.7 × 10 −11 per A/cm 2 , 50% larger than reported values from heavy metals) in sputtered amorphous PtSn 4 /CoFeB bilayers. Ta/CoFeB bilayers with interfacial MgO insertion layers are deposited as control samples. The control experiments show that increasing the interfacial resistance can increase the USMR value, which is the case in PtSn 4 /CoFeB bilayers. The observation of a large USMR value in an amorphous spin–orbit-torque material has provided an alternative pathway for USMR application in two-terminal SOT devices. 
    more » « less