There has been an increasing interest in exploring quantities associated with quantum information at colliders. We perform a detailed analysis describing how to measure the quantum discord in the top anti-top quantum state at the Large Hadron Collider (LHC). While for pure states, quantum discord, entanglement, and Bell nonlocality all probe the same correlations, for mixed states they probe different aspects of quantum correlations. The quantum discord, in particular, is interesting because it aims to encapsulate all correlations between systems that cannot have a classical origin. We employ two complementary approaches for the study of the top anti-top system, namely the decay method and the kinematic method. We highlight subtleties associated with measuring discord for reconstructed quantum states at colliders. Usually quantum discord is difficult to compute due to an extremization that must be performed. We show, however, that for the$$ t\overline{t} $$ system this extremization can be performed analytically and we provide closed-form formulas for the quantum discord. We demonstrate that with current LHC datasets, quantum discord can be observed at 3.6 – 5.7σ, depending on the signal region, with the decay method and can be measured at a precision of 0.1 – 0.2% with the kinematic method. At the high luminosity LHC, the observation of quantum discord is expected to be > 5σusing both the decay and kinematic methods and can be measured with a precision of 5% with the decay method and 0.05% with the kinematic method. Additionally, we identify the kinematic cuts at the LHC to isolate the$$ t\overline{t} $$ state that is separable but has non-zero discord. By systematically investigating quantum discord for the first time through a detailed collider analysis, this work expands the toolkit for quantum information studies in particle physics and lays the groundwork for deeper insights into the quantum properties in high-energy collisions. 
                        more » 
                        « less   
                    
                            
                            Quantum entanglement and Bell inequality violation in semi-leptonic top decays
                        
                    
    
            Quantum entanglement is a fundamental property of quantum mechanics. Recently, studies have explored entanglement in the$$ t\overline{t} $$ system at the Large Hadron Collider (LHC) when both the top quark and anti-top quark decay leptonically. Entanglement is detected via correlations between the polarizations of the top and anti-top and these polarizations are measured through the angles of the decay products of the top and anti-top. In this work, we propose searching for evidence of quantum entanglement in the semi-leptonic decay channel where the final state includes one lepton, one neutrino, twob-flavor tagged jets, and two light jets from theWdecay. We find that this channel is both easier to reconstruct and has a larger effective quantity of data than the fully leptonic channel. As a result, the semi-leptonic channel is 60% more sensitive to quantum entanglement and a factor of 3 more sensitive to Bell inequality violation, compared to the leptonic channel. In 139 fb−1(3 ab−1) of data at the LHC (HL-LHC), it should be feasible to measure entanglement at a precision of ≲ 3% (0.7%). Detecting Bell inequality violation, on the other hand, is more challenging. With 300 fb−1(3 ab−1) of integrated luminosity at the LHC Run-3 (HL-LHC), we expect a sensitivity of 1.3σ(4.1σ). In our study, we utilize a realistic parametric fitting procedure to optimally recover the true angular distributions from detector effects. Compared to unfolding this procedure yields more stable results. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112829
- PAR ID:
- 10545249
- Publisher / Repository:
- SISSA/Springer Science
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 7
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb−1of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($$ \textrm{t}\overline{\textrm{t}} $$ ) pair, or a light-flavor quark-antiquark ($$ \textrm{q}\overline{\textrm{q}} $$ ) pair and a virtual or on-shell W boson. The main backgrounds,$$ \textrm{t}\overline{\textrm{t}} $$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a$$ \textrm{t}\overline{\textrm{t}} $$ pair (a$$ \textrm{q}\overline{\textrm{q}} $$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.more » « less
- 
            A<sc>bstract</sc> This paper presents measurements of top-antitop quark pair ($$ t\overline{t} $$ ) production in association with additionalb-jets. The analysis utilises 140 fb−1of proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or fourb-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, andb-jet pair properties. Observable quantities characterisingb-jets originating from the top quark decay and additionalb-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with$$ t\overline{t}b\overline{b} $$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.more » « less
- 
            A<sc>bstract</sc> Differential cross sections for top quark pair ($$ \textrm{t}\overline{\textrm{t}} $$ ) production are measured in proton-proton collisions at a center-of-mass energy of 13 TeV using a sample of events containing two oppositely charged leptons. The data were recorded with the CMS detector at the CERN Large Hadron Collider and correspond to an integrated luminosity of 138 fb−1. The differential cross sections are measured as functions of kinematic observables of the$$ \textrm{t}\overline{\textrm{t}} $$ system, the top quark and antiquark and their decay products, as well as of the number of additional jets in the event. The results are presented as functions of up to three variables and are corrected to the parton and particle levels. When compared to standard model predictions based on quantum chromodynamics at different levels of accuracy, it is found that the calculations do not always describe the observed data. The deviations are found to be largest for the multi-differential cross sections.more » « less
- 
            Abstract Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ( ) events produced in proton–proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb−1. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observableDis derived from the top quark spin-dependent parts of the production density matrix and measured in the region of the production threshold. Values of are evidence of entanglement andDis observed (expected) to be ( ) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    