skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing fictitious states for Bell inequality violation in bipartite qubit systems with applications to the tt¯ system
There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the t t ¯ threshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal. Published by the American Physical Society2024  more » « less
Award ID(s):
2112829
PAR ID:
10545252
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
11
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  2. Top-quark pair production is observed in lead–lead ( Pb + Pb ) collisions at s NN = 5.02 TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb 1 . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is σ t t ¯ = 3.6 0.9 + 1.0 ( stat ) 0.5 + 0.8 ( syst ) μ b , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERN 
    more » « less
  3. Measurements of the polarization and spin correlation in top quark pairs ( t t ¯ ) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at s = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 . All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the t t ¯ system and the top quark scattering angle in the t t ¯ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the t t ¯ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for t t ¯ states at the production threshold and at high masses of the t t ¯ system. Entanglement is observed for the first time in events at high t t ¯ mass, where a large fraction of the t t ¯ decays are spacelike separated, with an expected and observed significance of above 5 standard deviations. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  4. A recent report of e + e D D ¯ events by the BESIII collaboration suggests the presence of a structure R at 3900 MeV. We argue that this structure, called G ( 3900 ) in the past, is not in fact due to a new c c ¯ resonance but rather naturally emerges due to a combination of interference between nearby resonances and the opening of the D * D ¯ channel. We further find that the appearance of this structure does not require suppression because of a radial node in the ψ ( 4040 ) wave function, although a node improves fit quality. The measured e + e coupling of ψ ( 4040 ) is found to be substantially smaller than previously estimated. In addition, we report new corrections to the measured cross section σ ( e + e D D ¯ ) at energies near ψ ( 3770 ) . Published by the American Physical Society2024 
    more » « less
  5. We present a search for the baryon number B and lepton number L violating decays τ Λ π and τ Λ ¯ π produced from the e + e τ + τ process, using a 364 fb 1 data sample collected by the Belle II experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have | Δ ( B L ) | equal to 2 and 0, respectively. Upper limits at 90% credibility level on the branching fractions of τ Λ π and τ Λ ¯ π are determined to be 4.7 × 10 8 and 4.3 × 10 8 , respectively. Published by the American Physical Society2024 
    more » « less