skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of cell wall compositions on lodging resistance of cereal crops: review
Abstract Lodging is the permanent displacement of stalks due to disrupted secondary cell walls caused by external factors, plant characters and their interaction. Anatomical, morphological and compositional traits are among lodging-inducing plant traits. In comparison with morphological and anatomical features, the correlation of lodging resistance and cell wall composition is not frequently reviewed. In this review, the relation between cell wall composition and lodging resistance of cereal stalks is comprehensively reviewed based on major cell wall components (lignin, cellulose and hemicellulose) and trace minerals. From the body of literatures reviewed across all cereal crops, lignin and cellulose were found to have significant positive correlation with lodging resistance. However, the effect of structural features of cellulose and lignin on lodging resistance was not investigated in most of the studies. This review also highlights the importance of biomass recalcitrance and lodging resistance trade-offs in the spectrum of genetic cell wall modifications.  more » « less
Award ID(s):
1826715
PAR ID:
10545272
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge
Date Published:
Journal Name:
The Journal of Agricultural Science
Volume:
161
Issue:
6
ISSN:
0021-8596
Page Range / eLocation ID:
794 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stalk lodging contributes to significant crop yield losses. Therefore, understanding the biomechanical strength and structural rigidity of grain stalks can contribute to improving stalk lodging resistance in crops. From the structural constituents of the stalk, the rind provides the principal structure, supporting cells against tension and bending loads. In this work, the biomechanical and viscoelastic behavior of the rind from the internodes of two sweet sorghum varieties (Della and REDforGREEN (RG)), grown in two different growing seasons, were evaluated by three-point micro-bending tests using a dynamic mechanical analyzer (DMA). In addition, the chemical composition of rinds and the microfibril angle (MFA) of the cell wall were determined using XRD. The results revealed that the biomechanical behavior of Della varieties was stiffer and more resistant to loads than that of RG varieties. Two features of the rind biomechanical properties, flexural modulus (FM) and flexural strength (FS), showed a significant reduction for RG. Particularly, a reduction in FS of 16–37% and in FM of 22–41% were detected for RG1. Changes in the stalks’ rind biomechanical properties were attributed to cell wall components. Total lignin and glucan/cellulose contents were positively correlated with the FM and FS of the rind. Subsequently, an increase in the two cell wall components drove an increase in stiffness. Furthermore, the MFA of the rind was also found to influence the rind strength. 
    more » « less
  2. Stalk lodging (structural failure crops prior to harvest) significantly reduces annual yields of vital grain crops. The lack of standardized, high throughput phenotyping methods capable of quantifying biomechanical plant traits prevents comprehensive understanding of the genetic architecture of stalk lodging resistance. A phenotyping pipeline developed to enable higher throughput biomechanical measurements of plant traits related to stalk lodging is presented. The methods were developed using principles from the fields of engineering mechanics and metrology and they enable retention of plant-specific data instead of averaging data across plots as is typical in most phenotyping studies. This pipeline was specifically designed to be implemented in large experimental studies and has been used to phenotype over 40,000 maize stalks. The pipeline includes both lab- and field-based phenotyping methodologies and enables the collection of metadata. Best practices learned by implementing this pipeline over the past three years are presented. The specific instruments (including model numbers and manufacturers) that work well for these methods are presented, however comparable instruments may be used in conjunction with these methods as seen fit. • Efficient methods to measure biomechanical traits and record metadata related to stalk lodging. • Can be used in studies with large sample sizes (i.e., > 1,000). 
    more » « less
  3. Abstract BackgroundCellulose degradation by cellulases has been studied for decades due to the potential of using lignocellulosic biomass as a sustainable source of bioethanol. In plant cell walls, cellulose is bonded together and strengthened by the polyphenolic polymer, lignin. Because lignin is tightly linked to cellulose and is not digestible by cellulases, is thought to play a dominant role in limiting the efficient enzymatic degradation of plant biomass. Removal of lignin via pretreatments currently limits the cost-efficient production of ethanol from cellulose, motivating the need for a better understanding of how lignin inhibits cellulase-catalyzed degradation of lignocellulose. Work to date using bulk assays has suggested three possible inhibition mechanisms: lignin blocks access of the enzyme to cellulose, lignin impedes progress of the enzyme along cellulose, or lignin binds cellulases directly and acts as a sink. ResultsWe used single-molecule fluorescence microscopy to investigate the nanoscale dynamics of Cel7A fromTrichoderma reesei, as it binds to and moves along purified bacterial cellulose in vitro. Lignified cellulose was generated by polymerizing coniferyl alcohol onto purified bacterial cellulose, and the degree of lignin incorporation into the cellulose meshwork was analyzed by optical and electron microscopy. We found that Cel7A preferentially bound to regions of cellulose where lignin was absent, and that in regions of high lignin density, Cel7A binding was inhibited. With increasing degrees of lignification, there was a decrease in the fraction of Cel7A that moved along cellulose rather than statically binding. Furthermore, with increasing lignification, the velocity of processive Cel7A movement decreased, as did the distance that individual Cel7A molecules moved during processive runs. ConclusionsIn an in vitro system that mimics lignified cellulose in plant cell walls, lignin did not act as a sink to sequester Cel7A and prevent it from interacting with cellulose. Instead, lignin both blocked access of Cel7A to cellulose and impeded the processive movement of Cel7A along cellulose. This work implies that strategies for improving biofuel production efficiency should target weakening interactions between lignin and cellulose surface, and further suggest that nonspecific adsorption of Cel7A to lignin is likely not a dominant mechanism of inhibition. 
    more » « less
  4. Context: Stalk lodging causes up to 43 % of yield losses in maize (Zea mays L.) worldwide, significantly worsening food and feed shortages. Stalk lodging resistance is a complex trait specified by several structural, material, and geometric phenotypes. However, the identity, relative contribution, and genetic tractability of these intermediate phenotypes remain unknown. Objective: The study is designed to identify and evaluate plant-, organ-, and tissue-level intermediate phenotypes associated with stalk lodging resistance following standardized phenotyping protocols and to understand the variation and genetic tractability of these intermediate phenotypes. Methods: We examined 16 diverse maize hybrids in two environments to identify and evaluate intermediate phenotypes associated with stalk flexural stiffness, a reliable indicator of stalk lodging resistance, at physiological maturity. Engineering-informed and machine learning models were employed to understand relationships among intermediate phenotypes and stalk flexural stiffness. Results: Stalk flexural stiffness showed significant genetic variation and high heritability (0.64) in the evaluated hybrids. Significant genetic variation and comparable heritability for the cross-sectional moment of inertia and Young’s modulus indicated that geometric and material properties are under tight genetic control and play a combinatorial role in determining stalk lodging resistance. Among the twelve internode-level traits measured on the bottom and the ear internode, most traits exhibited significant genetic variation among hybrids, moderate to high heritability, and considerable effect of genotype × environment interaction. The marginal statistical model based on structural engineering beam theory revealed that 74–80 % of the phenotypic variation for flexural stiffness was explained by accounting for the major diameter, minor diameter, and rind thickness of the stalks. The machine learning model explained a relatively modest proportion (58–62 %) of the variation for flexural stiffness. 
    more » « less
  5. This study sought to better understand how time of day (ToD) or turgor pressure might affect the flexural stiffness of sweet sorghum stalks and potentially regulate stalk lodging resistance. Stalk flexural stiffness measured across a 48 h period in 2019 showed a significant diurnal association with leaf water potential and stalk flexural stiffness. While the correlation between stalk flexural stiffness and this proxy for internal turgor status was statistically significant, it only accounted for roughly 2% of the overall variance in stiffness. Given that turgor status is a dynamic rather than fixed physiological variable like the cellular structure, these data suggest that internal turgor plays a small yet significant role in influencing the flexural stiffness of fully mature stalks prior to a stalk lodging event. The association was assessed at earlier developmental stages across three distinct cultivars and found not to be significant. Panicle weight and stalk basal weight, but not stalk Brix or water content, were found to be better predictors of stalk flexural stiffness than either ToD or turgor status. Observation across three cultivars and four distinct developmental stages ranging from the vegetative to the hard-dough stages suggests that stalk flexural stiffness changes significantly as a function of time. However, neither ToD nor turgor status appear to meaningfully contribute to observed variations in stalk flexural stiffness in either individual stalks or across larger populations. As turgor status was not found to meaningfully influence stalk strength or flexural stiffness at any developmental time point examined in any of the three sweet sorghum cultivars under study, turgor pressure likely offers only inconsequential contributions to the biomechanics underlying sweet sorghum stalk lodging resistance. 
    more » « less