skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1826715

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundStalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems. ResultsFully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased. ConclusionsTesting rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo. 
    more » « less
  2. Abstract Lodging is the permanent displacement of stalks due to disrupted secondary cell walls caused by external factors, plant characters and their interaction. Anatomical, morphological and compositional traits are among lodging-inducing plant traits. In comparison with morphological and anatomical features, the correlation of lodging resistance and cell wall composition is not frequently reviewed. In this review, the relation between cell wall composition and lodging resistance of cereal stalks is comprehensively reviewed based on major cell wall components (lignin, cellulose and hemicellulose) and trace minerals. From the body of literatures reviewed across all cereal crops, lignin and cellulose were found to have significant positive correlation with lodging resistance. However, the effect of structural features of cellulose and lignin on lodging resistance was not investigated in most of the studies. This review also highlights the importance of biomass recalcitrance and lodging resistance trade-offs in the spectrum of genetic cell wall modifications. 
    more » « less
  3. Abstract Stalk lodging destroys between 5 and 25% of grain crops annually. Developing crop varieties with improved lodging resistance will reduce the yield gap. Field-phenotyping equipment is critical to develop lodging resistant crop varieties, but current equipment is hindered by measurement error. Relatively little research has been done to identify and rectify sources of measurement error in biomechanical phenotyping platforms. This study specifically investigated sources of error in bending stiffness and bending strength measurements of maize stalks acquired using an in-field phenotyping platform known as the DARLING. Three specific sources of error in bending stiffness and bending strength measurements were evaluated: horizontal device placement, vertical device placement and incorrect recordings of load cell height. Incorrect load cell heights introduced errors as large as 130% in bending stiffness and 50% in bending strength. Results indicated that errors on the order of 15–25% in bending stiffness and 1–10% in bending strength are common in field-based measurements. Improving the design of phenotyping devices and associated operating procedures can mitigate this error. Reducing measurement error in field-phenotyping equipment is crucial for advancing the development of improved, lodging-resistant crop varieties. Findings have important implications for reducing the yield gap. 
    more » « less
  4. Abstract This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus. 
    more » « less
  5. Abstract Recently, due to accelerations in urban and industrial development, the health impact of air pollution has become a topic of key concern. Of the various forms of air pollution, fine atmospheric particulate matter (PM2.5; particles less than 2.5 micrometers in diameter) appears to pose the greatest risk to human health. While even moderate levels of PM2.5can be detrimental to health, spikes in PM2.5to atypically high levels are even more dangerous. These spikes are believed to be associated with regionally specific meteorological factors. To quantify these associations, we develop a Bayesian spatiotemporal quantile regression model to estimate the spatially varying effects of meteorological variables purported to be related to PM2.5levels. By adopting a quantile regression model, we are able to examine the entire distribution of PM2.5levels; for example, we are able to identify which meteorological drivers are related to abnormally high PM2.5levels. Our approach uses penalized splines to model the spatially varying meteorological effects and to account for spatiotemporal dependence. The performance of the methodology is evaluated through extensive numerical studies. We apply our modeling techniques to 5 years of daily PM2.5data collected throughout the eastern United States to reveal the effects of various meteorological drivers. 
    more » « less
  6. Abstract Due to reductions in both time and cost, group testing is a popular alternative to individual‐level testing for disease screening. These reductions are obtained by testing pooled biospecimens (eg, blood, urine, swabs, etc.) for the presence of an infectious agent. However, these reductions come at the expense of data complexity, making the task of conducting disease surveillance more tenuous when compared to using individual‐level data. This is because an individual's disease status may be obscured by a group testing protocol and the effect of imperfect testing. Furthermore, unlike individual‐level testing, a given participant could be involved in multiple testing outcomes and/or may never be tested individually. To circumvent these complexities and to incorporate all available information, we propose a Bayesian generalized linear mixed model that accommodates data arising from any group testing protocol, estimates unknown assay accuracy probabilities and accounts for potential heterogeneity in the covariate effects across population subgroups (eg, clinic sites, etc.); this latter feature is of key interest to practitioners tasked with conducting disease surveillance. To achieve model selection, our proposal uses spike and slab priors for both fixed and random effects. The methodology is illustrated through numerical studies and is applied to chlamydia surveillance data collected in Iowa. 
    more » « less
  7. Abstract Recent advances in sequencing and genotyping technologies are contributing to a data revolution in genome‐wide association studies that is characterized by the challenging largepsmallnproblem in statistics. That is, given these advances, many such studies now consider evaluating an extremely large number of genetic markers (p) genotyped on a small number of subjects (n). Given the dimension of the data, a joint analysis of the markers is often fraught with many challenges, while a marginal analysis is not sufficient. To overcome these obstacles, herein, we propose a Bayesian two‐phase methodology that can be used to jointly relate genetic markers to binary traits while controlling for confounding. The first phase of our approach makes use of a marginal scan to identify a reduced set of candidate markers that are then evaluated jointly via a hierarchical model in the second phase. Final marker selection is accomplished through identifying a sparse estimator via a novel and computationally efficient maximum a posteriori estimation technique. We evaluate the performance of the proposed approach through extensive numerical studies, and consider a genome‐wide application involving colorectal cancer. 
    more » « less
  8. Stalk lodging in the monocot Zea mays is an important agricultural issue that requires the development of a genome-to-phenome framework, mechanistically linking intermediate and high-level phenotypes. As part of that effort, tools are needed to enable better mechanistic understanding of the microstructure in herbaceous plants. A method was therefore developed to create finite element models using CT scan data for Zea mays. This method represents a pipeline for processing the image stacks and developing the finite element models. 2-dimensional finite element models, 3-dimensional watertight models, and 3-dimensional voxel-based finite element models were developed. The finite element models contain both the cell and cell wall structures that can be tested in silico for phenotypes such as structural stiffness and predicted tissue strength. This approach was shown to be successful, and a number of example analyses were presented to demonstrate its usefulness and versatility. This pipeline is important for two reasons: (1) it helps inform which microstructure phenotypes should be investigated to breed for more lodging-resistant stalks, and (2) represents an essential step in the development of a mechanistic hierarchical framework for the genome-to-phenome modeling of herbaceous plant stalk lodging. 
    more » « less
  9. This study sought to better understand how time of day (ToD) or turgor pressure might affect the flexural stiffness of sweet sorghum stalks and potentially regulate stalk lodging resistance. Stalk flexural stiffness measured across a 48 h period in 2019 showed a significant diurnal association with leaf water potential and stalk flexural stiffness. While the correlation between stalk flexural stiffness and this proxy for internal turgor status was statistically significant, it only accounted for roughly 2% of the overall variance in stiffness. Given that turgor status is a dynamic rather than fixed physiological variable like the cellular structure, these data suggest that internal turgor plays a small yet significant role in influencing the flexural stiffness of fully mature stalks prior to a stalk lodging event. The association was assessed at earlier developmental stages across three distinct cultivars and found not to be significant. Panicle weight and stalk basal weight, but not stalk Brix or water content, were found to be better predictors of stalk flexural stiffness than either ToD or turgor status. Observation across three cultivars and four distinct developmental stages ranging from the vegetative to the hard-dough stages suggests that stalk flexural stiffness changes significantly as a function of time. However, neither ToD nor turgor status appear to meaningfully contribute to observed variations in stalk flexural stiffness in either individual stalks or across larger populations. As turgor status was not found to meaningfully influence stalk strength or flexural stiffness at any developmental time point examined in any of the three sweet sorghum cultivars under study, turgor pressure likely offers only inconsequential contributions to the biomechanics underlying sweet sorghum stalk lodging resistance. 
    more » « less
  10. Stalk lodging contributes to significant crop yield losses. Therefore, understanding the biomechanical strength and structural rigidity of grain stalks can contribute to improving stalk lodging resistance in crops. From the structural constituents of the stalk, the rind provides the principal structure, supporting cells against tension and bending loads. In this work, the biomechanical and viscoelastic behavior of the rind from the internodes of two sweet sorghum varieties (Della and REDforGREEN (RG)), grown in two different growing seasons, were evaluated by three-point micro-bending tests using a dynamic mechanical analyzer (DMA). In addition, the chemical composition of rinds and the microfibril angle (MFA) of the cell wall were determined using XRD. The results revealed that the biomechanical behavior of Della varieties was stiffer and more resistant to loads than that of RG varieties. Two features of the rind biomechanical properties, flexural modulus (FM) and flexural strength (FS), showed a significant reduction for RG. Particularly, a reduction in FS of 16–37% and in FM of 22–41% were detected for RG1. Changes in the stalks’ rind biomechanical properties were attributed to cell wall components. Total lignin and glucan/cellulose contents were positively correlated with the FM and FS of the rind. Subsequently, an increase in the two cell wall components drove an increase in stiffness. Furthermore, the MFA of the rind was also found to influence the rind strength. 
    more » « less