Abstract Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance (optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences in cognition.
more »
« less
Intrinsic functional connectivity among memory networks does not predict individual differences in narrative recall
Abstract Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network (“DMN-C”) that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant’s whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
more »
« less
- Award ID(s):
- 2047415
- PAR ID:
- 10545599
- Publisher / Repository:
- Imaging Neuroscience
- Date Published:
- Journal Name:
- Imaging Neuroscience
- Volume:
- 2
- ISSN:
- 2837-6056
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9–10 years;n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.more » « less
-
As we comprehend narratives, our attentional engagement fluctuates over time. Despite theoretical conceptions of narrative engagement as emotion-laden attention, little empirical work has characterized the cognitive and neural processes that comprise subjective engagement in naturalistic contexts or its consequences for memory. Here, we relate fluctuations in narrative engagement to patterns of brain coactivation and test whether neural signatures of engagement predict subsequent memory. In behavioral studies, participants continuously rated how engaged they were as they watched a television episode or listened to a story. Self-reported engagement was synchronized across individuals and driven by the emotional content of the narratives. In functional MRI datasets collected as different individuals watched the same show or listened to the same story, engagement drove neural synchrony, such that default mode network activity was more synchronized across individuals during more engaging moments of the narratives. Furthermore, models based on time-varying functional brain connectivity predicted evolving states of engagement across participants and independent datasets. The functional connections that predicted engagement overlapped with a validated neuromarker of sustained attention and predicted recall of narrative events. Together, our findings characterize the neural signatures of attentional engagement in naturalistic contexts and elucidate relationships among narrative engagement, sustained attention, and event memory.more » « less
-
Abstract The current study used functional near‐infrared spectroscopy (fNIRS) to investigate whether and how individual differences in positive social engagement among 5‐month‐old (N= 109;N= 35 final sample) infants relate to variability in functional connectivity in the human brain's Default‐Mode Network (DMN). Neuroimaging results showed that on average infants displayed greater functional connectivity in the right than in the left hemisphere of the DMN, adding to prior work indicating faster connectivity development in the right hemisphere. Results did not show any positive associations between our preregistered measures of positive social engagement and functional connectivity in the DMN. However, an additional analysis revealed that higher levels of infants’ smiling and laughter during daily social interactions with their caregivers positively predicted DMN functional connectivity in the left hemisphere. This suggests that individual differences in connectivity in a long‐range brain network implicated in a host of social and cognitive functions are associated with some aspects of infants’ positive social‐interactive behaviors.more » « less
-
Abstract The brain is organized into intrinsically connected functional networks that can be reliably identified during resting-state functional magnetic resonance imaging (fMRI). Healthy aging is marked by decreased network segregation, which is linked to worse cognitive functioning, but aging-related changes in emotion are less well characterized. Valence bias, which represents the tendency to interpret emotionally ambiguous information as positive or negative, is more positive in older than younger adults and is associated with differences in task-based fMRI activation in the amygdala, prefrontal cortex, and a cingulo-opercular (CO) network. Here, we examined valence bias, age, and resting-state network segregation of 12 brain networks in a sample of 221 healthy individuals from 6 to 80 years old. Resting-state network segregation decreased linearly with increasing age, extending prior reports of de-differentiation across the lifespan. Critically, a more positive valence bias was related to lower segregation of the default mode network (DMN), due to stronger functional connectivity of the DMN with CO and, to a lesser extent, the ventral attention network (VAN) in all participants. In contrast to this overall segregation effect, in participants over 39 years old (who tend to show a positive valence bias), bias was also related to weaker connectivity between the DMN and Reward networks. The present findings indicate that specific interactions between the DMN, a task control network (CO), an emotion processing network (Reward), and, to a weaker extent, an attention network (VAN), support a more positive valence bias, perhaps through regulatory control of self-referential processing and reduced emotional reactivity in aging. The current work offers further insight into the functional brain network alterations that may contribute to affective well-being and dysfunction across the lifespan.more » « less
An official website of the United States government

