skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: KOLA: a concept for an optical multi-conjugate adaptive optics system for the W.M. Keck Observatory
We present progress on a conceptual design for a new Keck multi-conjugate adaptive optics system capable of visible light correction with a near-diffraction-limited spatial resolution. The KOLA (Keck Optical LGS AO) system will utilize a planned adaptive secondary mirror (ASM), 2 additional high-altitude deformable mirrors (DMs), and ≳ 8 laser guide stars (LGS) to sense and correct atmospheric turbulence. The field of regard for selecting guide stars will be 2’ and the corrected science field of view will be 60”. We describe science cases, system requirements, and performance simulations for the system performed with error budget spreadsheet tools and MAOS physical optics simulations. We will also present results from trade studies for the actuator count on the ASM. KOLA will feed a new optical imager and IFU spectrograph in addition to the planned Liger optical + infrared (λ > 850 nm) imager and IFU spectrograph. Performance simulations show KOLA will deliver a Strehl of 12% at g’, 21% at r’, 53% at Y, and 87% at K bands on axis with nearly uniform image quality over a 40”×40” field of view in the optical and over 60”×60” beyond 1 μm. Ultimately, the system will deliver spatial resolutions superior to HST and JWST (∼17 mas at r’-band) and comparable to the planned first-generation infrared AO systems for the ELTs.  more » « less
Award ID(s):
2108185
PAR ID:
10545659
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510675179
Page Range / eLocation ID:
16
Subject(s) / Keyword(s):
adaptive optics
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The MMT Adaptive optics exoPlanet characterization System (MAPS) is an exoplanet characterization program that encompasses instrument development, observational science, and education. The instrument we are developing for the 6.5m MMT observatory is multi-faceted, including a refurbished 336-actuator adaptive secondary mirror (ASM); two pyramid wavefront sensors (PyWFS's); a 1-kHz adaptive optics (AO) control loop; a high-resolution and long-wavelength upgrade to the Arizona infraRed Imager and Echelle Spectrograph (ARIES); and a new-AO-optimized upgrade to the MMT-sensitive polarimeter (MMT-Pol). With the completed MAPS instrument, we will execute a 60-night science program to characterize the atmospheric composition and dynamics of ~50-100 planets around other stars. The project is approaching first light, anticipated for Summer/Fall of 2022. With the electrical and optical tests complete and passing the review milestone for the ASM's development, it is currently being tuned. The PyWFS's are being built and integrated in their respective labs: the visible-light PyWFS at the University of Arizona (UA), and the infrared PyWFS at the University of Toronto (UT). The top-level AO control software is being developed at UA, with an on-sky calibration algorithm being developed at UT. ARIES development continues at UA, and MMT-Pol development is at the University of Minnesota. The science and education programs are in planning and preparation. We will present the design and development of the entire MAPS instrument and project, including an overview of lab results and next steps. 
    more » « less
  2. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system’s control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities. The system saw first light in 2021 and is being commissioned in 2022 to support single conjugate laser guide star (LGS) AO, along with a more sensitive EMCCD camera. Initial results are provided to demonstrate single NGS & LGS performance, system reliability, and the planned upgrade for four LGS to support laser tomography. 
    more » « less
  3. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    As part of the Keck All-sky Precision Adaptive optics (KAPA) project a laser Asterism Generator (AG) is being implemented on the Keck I telescope. The AG provides four Laser Guide Stars (LGS) to the Keck Adaptive Optics (AO) system by splitting a single 22W laser beam into four beams of equal intensity. We present the design and implementation of the AG for KAPA. We discuss the optical design and layout, the details of the mechanical design and fabrication, and the challenges of designing the assembly to fit into the limited available space on the Keck telescope. 
    more » « less
  4. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes four key science programs, an upgrade to the Keck I laser guide star (LGS) adaptive optics (AO) facility to improve image quality and sky coverage, AO telemetry based point spread function (PSF) estimates for all science exposures, and an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For the purpose of this conference we will focus on the AO facility upgrade which includes implementation of a new laser, wavefront sensor and real-time controller to support laser tomography, the laser tomography system itself, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star (NGS) and focus measurements. 
    more » « less
  5. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
    As part of the High order Advanced Keck Adaptive optics (HAKA) project, a state-of-the-art ALPAO 2844 actuator deformable mirror (DM) will replace the more than 25 years old 349 actuator DM on the Keck Adaptive Optics (AO) bench. The increase in the number of DM actuators requires a new set of pupil-relay optics (PRO) to map the 2.5mm DM actuator spacing to the 200μm lenslet spacing on the Shack-Hartmann wavefront sensor (WFS). A new lenslet array with increased focal lengths will be procured in order to maintain current plate scales. HAKA will initially support science with the near-infrared camera (NIRC2), a single mode fiber fed spectrograph (KPIC + NIRSPEC) and a fast visible imager (ORKID). In addition, a new infrared wavefront sensor (`IWA) is being designed to support science with ORKID and a suite of new science instruments: a mid-infrared coronagraphic integral field spectrograph (SCALES) and a fiber-fed high-resolution spectrograph (HISPEC). We present the opto-mechanical design of the HAKA DM, Shack-Hartmann WFS upgrades and the `IWA system. A mount for the HAKA DM will allow for quick integration and alignment to the Keck AO bench. The upgrade to the WFS PRO includes a new set of optics and associated mounting that fits within the mechanical constraints of the existing WFS and meets the requirements of the HAKA DM. 
    more » « less