skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Caught in the Act: Observations of the Double-mode RR Lyrae V338 Boo during the Disappearance of a Pulsation Mode
Abstract New results on the behavior of the double-mode RR Lyrae V338 Boo are presented. The Transiting Exoplanet Survey Satellite (TESS) observed this star again in 2022, and an observing campaign of the American Association of Variable Star Observers (AAVSO) was completed after the TESS observations as a follow-up. We find that the first overtone pulsation mode in this star completely disappears during the TESS observing window. This mode reappears at the end of the TESS observations, and the AAVSO observing campaign shows that in the months that followed, the first overtone mode was not only present but was the dominant mode of pulsation. This star, and potentially others like it, could hold the key to finally solving the mystery of the Blazhko effect in RR Lyrae.  more » « less
Award ID(s):
2137787
PAR ID:
10545803
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 157
Size(s):
Article No. 157
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new set of tools to derive systemic velocities for single-mode RR Lyrae stars from visual and near-infrared spectra. We derived scaling relations and line-of-sight velocity templates using both APOGEE andGaiaspectroscopic products combined with photometricG-band amplitudes. We provide a means to estimate systemic velocities for the RR Lyrae subclasses, RRab and RRc. Our analysis indicates that the scaling relation between the photometric and line-of-sight velocity amplitudes is nonlinear, with a break in a linear relation occurring around ≈0.4 mag in both theV-band andG-band amplitudes. We did not observe such a break in the relation for the first-overtone pulsators. Using stellar pulsation models, we further confirm and examine the nonlinearity in scaling relation for the RRab subclass. We observed little to no variation with stellar parameters (mass, metallicity, and luminosity) in the scaling relation between the photometric and line-of-sight velocity amplitudes for fundamental-mode pulsators. We observed an offset in the scaling relation between the observations and stellar pulsation models, mainly in the low-amplitude RR Lyrae regime. This offset disappears when different sets of convective parameters are used. Thus, the Fourier amplitudes obtained from the photometry and line-of-sight velocity measurements can be utilized to constrain convective parameters of stellar pulsation models. The scaling relations and templates for APOGEE andGaiadata accurately predict systemic velocities compared to literature values. In addition, our tools derived from theGaiaspectra improve the precision of the derived systemic velocities by approximately 50 percent and provide a better description of the uncertainty distribution in comparison with previous studies. Our newly derived tools will be used for RR Lyrae variables observed toward the Galactic bulge. 
    more » « less
  2. Stellar pulsation features provide valuable insights into the internal structure and evolutionary states of stars. In this study, we model stellar pulsations for first-overtone RR Lyrae variables, to constrain the effects that helium abundance variations have on the emitted light curves and the radial velocity curves. We model our variables using the hydrodynamic code, Radial Stellar Pulsations (RSP) from the Modules for Experiments in Stellar Astrophysics (MESA). Our results will compare light curves taken in the V-band and from TESS data to determine if the variations in light curve shapes can be accounted for by variations in the helium abundance. In particular, we will look at the brightness and pulsation phase for the compression humps observed during pulsation cycles. The compression hump is a bump in luminosity seen in some RR Lyrae variable stars, which is caused by interactions between moving stellar layers. It may be sensitive to changes in stellar composition, including the helium abundance, because the overall amount of material in the layers of a star may influence the timing and extent of interactions. By systematically adjusting the helium abundance in the models and comparing the results to real stellar luminosity data, we aim to explore how these variations influence the magnitude and timing of the compression humps. Understanding these underlying pulsation mechanisms is crucial for improving the use of pulsating stars as standard candles in cosmological measurements. 
    more » « less
  3. Abstract We present analysis of the RR Lyrae star, LS Her, and confirm the previously reported modulation to its Blazhko cycles. We performed Fourier analysis on two sectors (Sector 24 and 25) of data from the Transiting Exoplanet Survey Satellite (TESS) spanning 53 days. We find LS Her to have a primary pulsation period of 0.2308 day and a Blazhko period of 12.7 days in keeping with previously reported results. We also identified sideband frequencies around the Blazhko multiplets suggesting the Blazhko cycle is modulated on a timescale of 112 days. Analysis of the Blazhko effect using the TESS data clearly shows a changing amplitude and phase throughout the four Blazhko cycles. We compared our modeled results, which were based on our TESS frequency analysis, to TESS data (Sector 51) taken ∼700 days later and found our modulation model was not a good representation of the data. We then coupled our TESS analysis with the modulation frequency results from Wils et al. and found excellent agreement with the Sector 51 data. To further test this result we obtained ground-based,V-magnitude observations of LS Her in the summer of 2022. This data also showed excellent agreement with our coupled modulation model. We have verified that LS Her is a Blazhko star with a modulated Blazhko period of 109 days, stability over the 862 days of observations, and possible stability lasting over 15 yr. We discuss the ramifications of the modulation for other Blazhko stars that show Blazhko effect changes over time. 
    more » « less
  4. We present a new set of period–absolute magnitude–metallicity (PMZ) relations for single-mode RR Lyrae stars calibrated for the opticalGBP,V,G,GRP, near-infraredI,J,H, andKspassbands. We compiled a large dataset (over 100 objects) of fundamental and first-overtone RR Lyrae pulsators consisting of mean intensity magnitudes, reddenings, pulsation properties, iron abundances, and parallaxes measured by theGaiaastrometric satellite in its third data release. Our newly calibrated PMZ relations encapsulate the most up-to-date ingredients in terms of both data and methodology. They are intended to be used in conjunction with large photometric surveys targeting the Galactic bulge, including the Optical Gravitational Lensing Experiment (OGLE), the Vista Variables in the Vía Láctea Survey (VVV), and theGaiacatalog. In addition, our Bayesian probabilistic approach provides accurate uncertainty estimates of the predicted absolute magnitudes of individual RR Lyrae stars. Our derived PMZ relations provide consistent results when compared to benchmark distances to globular clusters NGC 6121 (also known as M 4), NGC 5139 (also known as omega Cen), and Large and Small Magellanic Clouds, which are stellar systems rich in RR Lyrae stars. Lastly, ourKs-band PMZ relations match well with the previously published PMZ relations based onGaiadata and accurately predict the distance toward the prototype of this class of variables, the eponymic RR Lyr itself. 
    more » « less
  5. Abstract SX Phoenicis (SXP) variables are short-period pulsating stars that exhibit a period–luminosity (PL) relation. We derived thegri-band PL and extinction-free period–Wesenheit (PW) relations, as well as the period-color and reddening-free period-Q-index relations for 47 SXP stars located in 21 globular clusters, using the optical light curves taken from Zwicky Transient Facility. These empirical relations were derived for the first time in thegrifilters except for theg-band PL relation. We used ourgi-band PL and PW relations to derive a distance modulus to Crater II dwarf spheroidal which hosts one SXP variable. Assuming that the fundamental and first-overtone pulsation mode for the SXP variable in Crater II, we found distance moduli of 20.03 ± 0.23 mag and 20.37 ± 0.24 mag, respectively, using the PW relation, where the latter is in excellent agreement with independent RR Lyrae based distance to Crater II dwarf galaxy. 
    more » « less