This content will become publicly available on April 29, 2025
Development of a Mobile Ad-Hoc Network Testbed: Modular Implementation of Ad-Hoc On-Demand Distance Vector Routing
More Like this
-
null (Ed.)Cooperative Co-evolutionary Algorithms effectively train policies in multiagent systems with a single, statically defined team. However, many real-world problems, such as search and rescue, require agents to operate in multiple teams. When the structure of the team changes, these policies show reduced performance as they were trained to cooperate with only one team. In this work, we solve the cooperation problem by training agents to fill the needs of an arbitrary team, thereby gaining the ability to support a large variety of teams. We introduce Ad hoc Teaming Through Evolution (ATTE) which evolves a limited number of policy types using fitness aggregation across multiple teams. ATTE leverages agent types to reduce the dimensionality of the interaction search space, while fitness aggregation across teams selects for more adaptive policies. In a simulated multi-robot exploration task, ATTE is able to learn policies that are effective in a variety of teaming schemes, improving the performance of CCEA by a factor of up to five times.more » « less
-
The ability to communicate about exact number is critical to many modern human practices spanning science, industry, and politics. Although some early numeral systems used 1-to-1 correspondence (e.g., ‘IIII' to represent 4), most systems provide compact representations via more arbitrary conventions (e.g., ‘7’ and ‘VII'). When people are unable to rely on conventional numerals, however, what strategies do they initially use to communicate number? Across three experiments, participants used pictures to communicate about visual arrays of objects containing 1–16 items, either by producing freehand drawings or combining sets of visual tokens. We analyzed how the pictures they produced varied as a function of communicative need (Experiment 1), spatial regularities in the arrays (Experiment 2), and visual properties of tokens (Experiment 3). In Experiment 1, we found that participants often expressed number in the form of 1-to-1 representations, but sometimes also exploited the configuration of sets. In Experiment 2, this strategy of using configural cues was exaggerated when sets were especially large, and when the cues were predictably correlated with number. Finally, in Experiment 3, participants readily adopted salient numerical features of objects (e.g., four-leaf clover) and generally combined them in a cumulative-additive manner. Taken together, these findings corroborate historical evidence that humans exploit correlates of number in the external environment – such as shape, configural cues, or 1-to-1 correspondence – as the basis for innovating more abstract number representations.more » « less