skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new process-based and scale-aware desert dust emission scheme for global climate models – Part I: Description and evaluation against inverse modeling emissions
Abstract. Desert dust accounts for most of the atmosphere's aerosol burden by mass andproduces numerous important impacts on the Earth system. However, currentglobal climate models (GCMs) and land-surface models (LSMs) struggle toaccurately represent key dust emission processes, in part because ofinadequate representations of soil particle sizes that affect the dustemission threshold, surface roughness elements that absorb wind momentum,and boundary-layer characteristics that control wind fluctuations.Furthermore, because dust emission is driven by small-scale (∼ 1 km or smaller) processes, simulating the global cycle of desert dust inGCMs with coarse horizontal resolutions (∼ 100 km) presents afundamental challenge. This representation problem is exacerbated by dustemission fluxes scaling nonlinearly with wind speed above a threshold windspeed that is sensitive to land-surface characteristics. Here, we addressthese fundamental problems underlying the simulation of dust emissions inGCMs and LSMs by developing improved descriptions of (1) the effect of soiltexture on the dust emission threshold, (2) the effects of nonerodibleroughness elements (both rocks and green vegetation) on the surface windstress, and (3) the effects of boundary-layer turbulence on drivingintermittent dust emissions. We then use the resulting revised dust emissionparameterization to simulate global dust emissions in a standalone modelforced by reanalysis meteorology and land-surface fields. We further propose(4) a simple methodology to rescale lower-resolution dust emissionsimulations to match the spatial variability of higher-resolution emissionsimulations in GCMs. The resulting dust emission simulation showssubstantially improved agreement against regional dust emissionsobservationally constrained by inverse modeling. We thus find that ourrevised dust emission parameterization can substantially improve dustemission simulations in GCMs and LSMs.  more » « less
Award ID(s):
1856389
PAR ID:
10545915
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Leung_et_al_2023_ACP
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
11
ISSN:
1680-7324
Page Range / eLocation ID:
6487 to 6523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Desert dust is an important atmospheric aerosol that affects the Earth's climate, biogeochemistry, and air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact of dust on the Earth's climate and ecosystems, in part because these models lack several essential aeolian processes that couple dust with climate and land surface processes. In this study, we address this issue by implementing several new parameterizations of aeolian processes detailed in our companion paper in the Community Earth System Model version 2 (CESM2). These processes include (1) incorporating a simplified soil particle size representation to calculate the dust emission threshold friction velocity, (2) accounting for the drag partition effect of rocks and vegetation in reducing wind stress on erodible soils, (3) accounting for the intermittency of dust emissions due to unresolved turbulent wind fluctuations, and (4) correcting the spatial variability of simulated dust emissions from native to higher spatial resolutions on spatiotemporal dust variability. Our results show that the modified dust emission scheme significantly reduces the model bias against observations compared with the default scheme and improves the correlation against observations of multiple key dust variables such as dust aerosol optical depth (DAOD), surface particulate matter (PM) concentration, and deposition flux. Our scheme's dust also correlates strongly with various meteorological and land surface variables, implying higher sensitivity of dust to future climate change than other schemes' dust. These findings highlight the importance of including additional aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing model assessments of how dust impacts climate and ecosystem changes. 
    more » « less
  2. Abstract Here we present observations of a dust storm that occurred on 22 February 2020 in the northwestern Sonoran Desert. In‐situ and remotely sensed measurements and output from numerical simulations suggest that evaporative cooling from cold frontal orographic precipitation spilling over an upwind mountain range generated a density current, with dust uplift occurring as the density current traveled over the emissive desert surface. Because the density current was laden with dust, time series of vertical profiles of aerosol backscatter and extinction from a ceilometer located 25 km downwind of the initial dust emission event show a well‐developed density current structure, including an overturning frontal head with a vertical extent of 1.2 km. Ceilometer measurements and soundings suggest a density current body depth of 400–500 m exhibiting a two‐layer structure that consisted of a positively sheared and dusty lower‐level, and a negatively sheared and pristine upper level. Kelvin‐Helmholtz instability at the top of the density current cold pool generated quasi‐regular oscillations in the height of the dust and pristine‐sky interfacial layer. Ridges and troughs in the height of this interfacial layer were coupled to maxima and minima in surface wind speed and near surface dust concentrations, respectively, with peak dust concentrations located directly under the interfacial layer ridges. These results corroborate several findings from model studies of dust emission and transport by density currents, and suggest that the internal circulation of a density current modifies the timing of dust emission and the patterns of dust concentration within the current body. 
    more » « less
  3. This study investigates the influence of planetary boundary layer (PBL) schemes and land surface models (LSMs) on the performance of the Weather Research & Forecasting model in simulating the development of downslope windstorms in the lee of the Santa Ynez Mountains in Santa Barbara, California (known as Sundowner winds). Using surface stations, a vertical wind profiler, and a multi-physics ensemble approach, we found that most of the wind speed biases are controlled by the roughness length z 0 , and so by the choice of LSM. While timing characteristics of Sundowners are insensitive to both LSM and PBL schemes, a clear sensitivity in the horizontal extent of strong surface winds is found for both PBL parameterization and z 0 , which are related to patterns of self-induced wave-breaking near the mountaintop, and the erosion of the marine layer. These results suggest that LSMs with relatively high values of z 0 , and TKE-based or hybrid PBL schemes adequately simulate downslope windstorms in the lee of mountain ranges, specifically in areas where downslope windstorms interact with the marine boundary layer with stably stratified characteristics. 
    more » « less
  4. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, atmospheric models struggle to accuratelyrepresent its spatial and temporal distribution. These model errors arepartially caused by fundamental difficulties in simulating dust emission incoarse-resolution models and in accurately representing dust microphysicalproperties. Here we mitigate these problems by developing a new methodologythat yields an improved representation of the global dust cycle. We presentan analytical framework that uses inverse modeling to integrate an ensembleof global model simulations with observational constraints on the dust sizedistribution, extinction efficiency, and regional dust aerosol opticaldepth. We then compare the inverse model results against independentmeasurements of dust surface concentration and deposition flux and find thaterrors are reduced by approximately a factor of 2 relative to currentmodel simulations of the Northern Hemisphere dust cycle. The inverse modelresults show smaller improvements in the less dusty Southern Hemisphere,most likely because both the model simulations and the observationalconstraints used in the inverse model are less accurate. On a global basis,we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than mostmodels account for. This larger PM20 dust flux is needed to matchobservational constraints showing a large atmospheric loading of coarsedust. We obtain gridded datasets of dust emission, vertically integratedloading, dust aerosol optical depth, (surface) concentration, and wet anddry deposition fluxes that are resolved by season and particle size. As ourresults indicate that this dataset is more accurate than current modelsimulations and the MERRA-2 dust reanalysis product, it can be used toimprove quantifications of dust impacts on the Earth system. 
    more » « less
  5. Abstract In situ observations and output from a numerical model are utilized to examine three dust outbreaks that occurred in the northwestern Sonoran Desert. Via analysis of these events, it is shown that trapped waves generated in the lee of an upwind mountain range produced high surface wind speeds along the desert floor and the observed dust storms. Based on analysis of observational and model output, general characteristics of dust outbreaks generated by trapped waves are suggested, including dust-layer depths and concentrations that are dependent upon wave phase and height above the surface, emission and transport associated with the presence of a low-level jet, and wave-generated high wind speeds and thus emission that occurs far downwind of the wave source. Trapped lee waves are ubiquitous in Earth’s atmosphere and thus it is likely that the meteorological aspects of the dust storms examined here are also relevant to understanding dust in other regions. These dust outbreaks occurred near the Salton Sea, an endorheic inland body of water that is rapidly drying due to changes in water-use management. As such, these findings are also relevant in terms of understanding how future changes in size of the Salton Sea will impact dust storms and air quality there. Significance Statement Dust storms are ubiquitous in Earth’s atmosphere, yet the physical processes underlying dust emission and subsequent transport are not always understood, in part due to the wide variety of meteorological processes that can generate high winds and dust. Here we use in situ measurements and numerical modeling to demonstrate that vertically trapped atmospheric waves generated by air flowing over a mountain are one such mechanism that can produce dust storms. We suggest several features of these dust outbreaks that are specific to their production by trapped waves. As the study area is a region undergoing rapid environmental change, these results are relevant in terms of predicting future dust there. 
    more » « less