Algorithmic fairness in the context of personalized recommendation presents significantly different challenges to those commonly encountered in classification tasks. Researchers studying classification have generally considered fairness to be a matter of achieving equality of outcomes (or some other metric) between a protected and unprotected group, and built algorithmic interventions on this basis. We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted, requiring a more general approach. To address the fundamental problem of fairness in the presence of multiple stakeholders, with different definitions of fairness, we propose the Social Choice for Recommendation Under Fairness – Dynamic (SCRUF-D) architecture, which formalizes multistakeholder fairness in recommender systems as a two-stage social choice problem. In particular, we express recommendation fairness as a combination of an allocation and an aggregation problem, which integrate both fairness concerns and personalized recommendation provisions, and derive new recommendation techniques based on this formulation. We demonstrate the ability of our framework to dynamically incorporate multiple fairness concerns using both real-world and synthetic datasets.
more »
« less
This content will become publicly available on October 1, 2025
Social Choice for Heterogeneous Fairness in Recommendation
Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders that may have competing interests. Previous work in this area has often been limited by fixed, single-objective definitions of fairness, built into algorithms or optimization criteria that are applied to a single fairness dimension or, at most, applied identically across dimensions. These narrow conceptualizations limit the ability to adapt fairness-aware solutions to the wide range of stakeholder needs and fairness definitions that arise in practice. Our work approaches recommendation fairness from the standpoint of computational social choice, using a multi-agent framework. In this paper, we explore the properties of different social choice mechanisms and demonstrate the successful integration of multiple, heterogeneous fairness definitions across multiple data sets.
more »
« less
- Award ID(s):
- 2107505
- PAR ID:
- 10546034
- Publisher / Repository:
- Proceedings of the 18th ACM Conference on Recommender Systems: Late-Breaking Results
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recommender systems have a variety of stakeholders. Applying concepts of fairness in such systems requires attention to stakeholders’ complex and often-conflicting needs. Since fairness is socially constructed, there are numerous definitions, both in the social science and machine learning literatures. Still, it is rare for machine learning researchers to develop their metrics in close consideration of their social context. More often, standard definitions are adopted and assumed to be applicable across contexts and stakeholders. Our research starts with a recommendation context and then seeks to understand the breadth of the fairness considerations of associated stakeholders. In this paper, we report on the results of a semi-structured interview study with 23 employees who work for the Kiva microlending platform. We characterize the many different ways in which they enact and strive toward fairness for microlending recommendations in their own work, uncover the ways in which these different enactments of fairness are in tension with each other, and identify how stakeholders are differentially prioritized. Finally, we reflect on the implications of this study for future research and for the design of multistakeholder recommender systems.more » « less
-
Blum, A (Ed.)Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition.more » « less
-
As recommender systems have become more widespread and moved into areas with greater social impact, such as employment and housing, researchers have begun to seek ways to ensure fairness in the results that such systems produce. This work has primarily focused on developing recommendation approaches in which fairness metrics are jointly optimized along with recommendation accuracy. However, the previous work had largely ignored how individual preferences may limit the ability of an algorithm to produce fair recommendations. Furthermore, with few exceptions, researchers have only considered scenarios in which fairness is measured relative to a single sensitive feature or attribute (such as race or gender). In this paper, we present a re-ranking approach to fairness-aware recommendation that learns individual preferences across multiple fairness dimensions and uses them to enhance provider fairness in recommendation results. Specifically, we show that our opportunistic and metric-agnostic approach achieves a better trade-off between accuracy and fairness than prior re-ranking approaches and does so across multiple fairness dimensions.more » « less
-
We present RobinHood, an offline contextual bandit algorithm designed to satisfy a broad family of fairness constraints. Our algorithm accepts multiple fairness definitions and allows users to construct their own unique fairness definitions for the problem at hand. We provide a theoretical analysis of RobinHood, which includes a proof that it will not return an unfair solution with probability greater than a user-specified threshold. We validate our algorithm on three applications: a tutoring system in which we conduct a user study and consider multiple unique fairness definitions; a loan approval setting (using the Statlog German credit data set) in which well-known fairness definitions are applied; and criminal recidivism (using data released by ProPublica). In each setting, our algorithm is able to produce fair policies that achieve performance competitive with other offline and online contextual bandit algorithms.more » « less